Biogeosciences Discuss., 4, 2699–2732, 2007 www.biogeosciences-discuss.net/4/2699/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences

Picoplankton diversity in the South-East Pacific Ocean from cultures

F. Le Gall¹, F. Rigaut-Jalabert¹, D. Marie¹, L. Garczarek¹, M. Viprey¹, A. Gobet^{1,2}, and D. Vaulot¹

 ¹Station Biologique de Roscoff, UMR 7144, CNRS et Université Pierre et Marie Curie, Place G. Tessier, 29682, Roscoff, France
 ²Present address: Max Planck Institute for Marine Microbiology, Celsiustrasse 1, 28209 Bremen, Germany

Received: 4 July 2007 - Accepted: 4 July 2007 - Published: 7 August 2007

Correspondence to: D. Vaulot (vaulot@sb-roscoff.fr)

BGD 4, 2699-2732, 2007 Picoplankton diversity in the South-East Pacific Ocean F. Le Gall et al. Title Page Abstract Introduction Conclusions References **Tables Figures |**◀ Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Abstract

In late 2004, the BIOSOPE cruise sailed between the equatorial influenced waters off Marquesas islands and the nutrient enriched waters of the Chilean upwelling. Along the way, it explored the Southeast Pacific gyre centred around Easter Island, which is ⁵ probably the most oligotrophic oceanic region on earth. During this cruise, we undertook a vigorous effort to isolate novel photosynthetic picoplanktonic eukaryotes. Two strategies were attempted on board: enrichment of samples with culture medium and sorting of specific populations by flow cytometry based on chlorophyll fluorescence. Over 1900 pre-cultures were started and then further purified by flow cytometry, serial dilution or pipette isolation to yield a total of 212 strains. These strains were characterized morphologically and for more than 50% of them, genetically, through partial sequencing of the 18 S rRNA gene.

Among the characterized strains, the largest number are stramenopiles (Heterokontophyta) with a record of 38 strains belonging to the species *Pelagomonas calceolata*

(Pelagophyceae). Strains from the recently described genera *Bolidomonas* and *Florenciella* have been re-isolated for the first time since their description. Two other abundant groups are the Chlorophyta, especially Prasinophyceae, and the Haptophyta, especially the genera *Phaeocystis* and *Emiliania*. A limited number of heterotrophic flagellates have also been isolated, all of them closely related to known species. Finally
 over a dozen of unicellular cyanobacteria strains have been obtained, some forming unusual short chains.

Overall our strategy was quite successful since it allowed us to isolate a large number of picoplankton strains but failed in two respects. First, apparently very few novel taxa have been obtained. One set of strains is related to *Prasinoderma coloniale*

(Prasinococcales, Prasinophyceae) but their sequences are sufficiently different from the latter to probably belong to a new genus or species. The sequences of two other strains are phylogenetically affiliated to stramenopile environmental sequences, probably corresponding a new algal class. Second, very few strains have been obtained

BGD

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean

from the very oligotrophic central gyre itself. Future work should probably combine flow cytometry sorting with culture media and cultivation approaches specifically developed for oligotrophic water species.

1 Introduction

- ⁵ Thirty years ago, the existence of very small algal cells was discovered in marine waters (Johnson and Sieburth, 1982; Waterbury et al., 1979). They were termed picoplankton, defined as smaller than 2–3 μm (Sieburth et al., 1978). It was soon realized that a significant fraction of photosynthetic biomass and primary production could be attributed to these tiny cells (Li et al., 1983; Platt et al., 1983). This small size fraction was found to be more important as chlorophyll concentration decreased, i.e. as the degree of oligotrophy increased (Herbland et al., 1985). Within photosynthetic picoplankton, prokaryotes appeared early on as much less diversified than eukaryotes as they are dominated by two major cyanobacteria genera: *Prochlorococcus* and *Synechococcus*. This probably explains why we now know much more about photosynthetic
 ¹⁵ picoplanktonic prokaryotes than eukaryotes. In particular, the genetic diversity of these
- problanktonic prokaryotes than eukaryotes. In particular, the genetic diversity of these prokaryotes has been quite well characterized (Fuller et al., 2003; Rocap et al., 2002), representatives of key genotypes have been isolated in culture, and more recently quite a few genomes have been sequenced (Palenik et al., 2003; Rocap et al., 2003). It is now possible to map the distribution of key groups of cyanobacteria in oceanic waters
 and to assess the existing relationships between genotypes and ecotypes (Johnson et al.)
 - al., 2006).

For photosynthetic picoeukaryotes, the situation is, in many respects, much less advanced, one reason being their very wide phylogenetic diversity. They belong to at least four major lineages: Chlorophyta, Haptophyta, stramenopiles (or Heterokonto-phyta) and Alveolata. Moreover, extensive studies of their genetic diversity from environmental samples only started less than 10 years ago (López-García et al., 2001; Moon-van der Staay et al., 2001). To date, about 20 species that are picoplanktonic

BGD 4, 2699-2732, 2007 **Picoplankton** diversity in the South-East Pacific Ocean F. Le Gall et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures |**◀ Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

sensu stricto (i.e. for which cells are always smaller than 3μ m) have been described (Vaulot et al., 2007¹). Among these, knowledge about "flagship" species such as *Ostreococcus* and *Micromonas* (both belonging to the order Mamiellales, Prasinophyceae) is progressing fast since the genome of several "ecotypes" has already been (or is cur-

- ⁵ rently) sequenced (Derelle et al., 2006; Palenik et al., 2007). Their oceanic distribution can be mapped using techniques such as fluorescent in situ hybridization (Not et al., 2005) or quantitative PCR (Marie et al., 2006). However, this only constitutes the tip of the iceberg as molecular approaches, in particular the analysis of 18S rDNA genetic libraries from the natural environment, have pointed out to a very wide diversity
- at all taxonomic levels (Vaulot et al., 2007¹). For example, a new division of photosynthetic eukaryotes, the picobiliphytes, has been recently discovered (Not et al., 2007). At the class, order or genus level many taxa are only known from their sequences. This is the case for example for Prasinophyceae clade VII B (Guillou et al., 2004) or for *Chrysochromulina*-related clades within the prymnesiophytes (Moon-van der Staay
- et al., 2000). For all these taxonomic groups, there is a critical need to obtain cultured representatives. This concern is especially acute in open ocean oligotrophic regions due to the difficulty to isolate and maintain organisms adapted to low nutrient conditions that are often outgrown by fast dividing "weed" species.

The BIOSOPE cruise that sailed through the center of the South East Pacific gyre,
 probably the most oligotrophic place on earth, offered an opportunity to obtain cultures from this unique environment. We performed sample enrichment with diluted culture medium following filtration to separate the smaller picoplankton cells from the rest of the plankton, a strategy that allowed us in the past to obtain novel taxa (Vaulot et al., 2004). We also targeted specifically photosynthetic picoeukaryotes by using flow cy tometry sorting directly on board the ship. In the end, we obtained 212 cultures that have been integrated to the Roscoff Culture Collection (RCC), more than half of which

were characterized genetically by sequencing partially the 18S rRNA gene. These cul-

BGD									
4, 2699–2732, 2007									
Picoplankton diversity in the South-East Pacific Ocean									
F. Le Gall et al.									
Title Page									
Abstract Introduction									
Conclusions References									
Tables	Figures								
14	×								
•									
Back	Close								
Full Scre	een / Esc								
Printer-frier	ndly Version								
Interactive	Discussion								

¹Vaulot, D., Eikrem, W., Viprey, M., and Moreau, H.: The diversity of eukaryotic marine picophytoplankton, FEMS Microbiol. Rev., submitted, 2007.

tures encompass representatives of five major phylogenetic divisions: Cyanobacteria, Chlorophyta (mostly Prasinophyceae), stramenopiles, Haptophyta, Alveolata (dinoflagellates), Euglenozoa (bodonids).

2 Material and methods

5 2.1 Sampling

Samples were taken in general at two depths (surface layer and vicinity of the chlorophyll maximum) at selected stations along the BIOSOPE cruise track (Fig. 1 and Table 1) using Niskin bottles mounted on a CTD frame. The oceanographic context of the cruise is described in Claustre et al. (2007)².

10 2.2 Primary cultures

20

We used two different strategies to obtain starter cultures. The first one was based on filtered seawater enriched with nutrients. The second one relied on single cell sorting by flow cytometry, targeting specific cell populations based on their size and pigment fluorescence. As cultures were examined several times during the cruise, many variations were attempted in an effort to increase final culture yield.

2.2.1 Growth conditions used on board

All cultures were incubated on board in a thermostatic cabinet set at 20°C. Two light levels were obtained with 2 Sylvania 18W tubes: white light around 140 μ mol photons.m⁻² s⁻¹ and blue light (Moon Light Blue paper, M.E.S, Nantes, France) around 8 μ mol photons m⁻² s⁻¹. We used three types of medium: K (Keller et al., 1987)

BGD 4, 2699–2732, 2007 **Picoplankton** diversity in the South-East Pacific Ocean F. Le Gall et al. **Title Page** Introduction Abstract Conclusions References **Figures Tables** Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

²Claustre, H., Sciandra, A., Vaulot, D., and Raimbault, P.: Introduction to the special section: bio-optical and biogeochemical conditions in the South East Pacific in late 2004 – the BIOSOPE program, Biogeosciences Discuss., in preparation, 2007.

for photosynthetic eukaryotes, Pro2 (Moore and Chisholm, 1999) for photosynthetic prokaryotes (*Prochlorococcus* and *Synechococcus*), and rice-based (Massana et al., 2004) for heterotrophic eukaryotes which were grown in the dark. Multi-well plates were wrapped with parafilm in order to avoid any evaporation during growth.

5 2.2.2 Enrichment cultures

About 500 mL of sample seawater was filtered by simple gravity through two superposed (in an effort to provide more tight size fractionation) Nuclepore filters of 47 mm diameter, with either 0.6 μ m or 3 μ m porosity (Whatman International Ltd, Maidstone, UK). The filtrate was partitioned into 50 mL culture flasks (Sarstedt, Orsay, France) or, at one station (HNL3), into individual wells of 24-well plates to which we added either 1/10 or 1/100 of full strength K or Pro2 medium. In order to try to promote nitrogen fixing organisms, some cultures were started by simply amending sea water with iron (as FeCl₃) and phosphorus (as KH₂PO₄ at final concentrations of 3 nM and 0.4 μ M, respectively.

15 2.2.3 Cultures sorted by flow cytometry

Samples were run either un-concentrated or concentrated between 5 and 100-fold by tangential flow filtration using a 100 000 MWCO (Regenerated Cellulose – RC ref VF20C4) Vivaflow 200 cassette. Concentration was usually necessary to target the rarer cells. Between 1 to 500 000 cells were sorted using a FACSAria (Becton Dickinson, San Jose CA) flow cytometer either into 24 or 48-well plates or directly into 10 mL polystyrene tubes pre-filled with medium diluted 100 times (Table 2). Different cell populations were discriminated based on side scatter as well as orange and red fluorescence following excitation at 488 nm (20 mW) and sorting was done either in purity or yield mode.

BGD 4, 2699-2732, 2007 **Picoplankton** diversity in the South-East Pacific Ocean F. Le Gall et al. Title Page Introduction Abstract Conclusions References **Tables Figures |**◀ Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

2.3 Primary culture processing and establishment of strains

On board the ship, primary cultures (either enriched or flow sorted) were checked for growth once or twice (depending on how early in the cruise they were started) using flow cytometry and inverted microscopy. Cultures that displayed growth but appeared ⁵ mixed were sorted a second time.

A first set of cultures were transferred back to Roscoff on the occasion of change of crew at Easter Island at mid-cruise. At the end of the cruise, cultures from the early part of the cruise (i.e. about two months old) that showed no evidence of containing photosynthetic cells based on flow cytometry analysis were discarded. All cultures grown in multi-well plates were transferred to 10 mL polystyrene tubes and brought back to Roscoff in an ice box.

Once transferred back to Roscoff, cultures were monitored based on colour as well as with optical microscopy and flow cytometry. Cultures were purified either by serial dilution, solid medium plating, or individual cell pipetting under an inverted microscope.

Strains that appeared to be pure were transferred to normal strength medium [PCR-S11 (Rippka et al., 2000), K, and rice for cyanobacteria, autotrophic and heterotrophic eukaryotes, respectively] and entered into the Roscoff Culture Collection (RCC) under new accession numbers (Table 2).

2.4 Strain characterization

10

- Strains deposited to the RCC were characterized by optical microscopy. For each strain, pictures were taken on live cultures with an Olympus BX51 microscope with a x100 objective using differential interference contrast (DIC) with a SPOT RT-slider digital camera (Diagnostics Instruments, Sterling Heights, MI). Average cell dimension of each culture was determined from the pictures. Flagellated cells were also photographed after adding one drop of lugol to visualize flagellum shape, length and pumber. Overage bettering were identified by their seleur and shape. The merphalemy of the picture.
 - number. Cyanobacteria were identified by their colour and shape. The morphology of a few strains was confirmed by whole-mount transmission electron microscopy. Cells

were fixed for 15 min with 1% glutaraldehyde. A drop of fixed cells was deposited onto formvar-coated grids. When the drop had dried, grids were rinsed with distilled water. Cells on grids were stained with a saturated solution of uranyl acetate for 20 min and rinsed with distilled water. Photomicrographs were taken with a JEOL JEM-1200EX
 ⁵ electron microscope.

A subset of strains was characterized by their partial 18 S ribosomal RNA gene sequence. Cultures were grown in 50 mL flasks for 1–2 weeks depending on the growth of each strain and recovered by centrifugation at 11 000×g for 10 min. DNA was extracted using 3% Cethyl Trimethyl Ammonium Bromide (CTAB, Doyle and Doyle, 1990). DNA was then stored at –80°C.

10

The 18S rRNA gene was amplified by polymerase chain reaction (PCR) using the primer set Euk328f and Euk329r (Moon-van der Staay et al., 2000) and the HotStarTaq Master Mix (Qiagen, Courtaboeuf, France). For PCR, a 15 min initial activation step of the Polymerase at 95°C, was followed by 40 cycles including 1 min of denaturation at

- 94° C, 45 s of annealing at 57° C and 75 s extension at 72° C. The PCR program was finished by a final extension of 10 min at 72° C followed by cooling at 4° C. PCR products were purified with the Qiaquick PCR purification kit (Qiagen) and controlled by electrophoresis on a 1% agarose gel. Partial 18 S rRNA gene sequences were determined from purified PCR products by using Big Dye Terminator V3.1 (Applied Biosystems,
- ²⁰ Foster city, CA, USA) and the internal primer Euk 528f (Elwood et al., 1985) run on an ABI prism 3100 sequencer (Applied Biosystems, Courtaboeuf, France).

Sequences were compared to those available in public database with NCBI BLAST web application. Sequences were also automatically aligned using the ARB program (Ludwig et al., 2004) to a set of more than 20 000 high quality pre-aligned ²⁵ eukaryotic sequences available from the Silva database (database SSURef: http: //www.arb-silva.de). After manual refinement of the alignment, sequences were added to the reference tree provided with the SSURef database using the quick parsimony addition option. Sequences with high similarities were grouped together using Fast Group II (http://biome.sdsu.edu/fastgroup/fg_tools.htm) with the sequence match pa-

BGD

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean

rameter set at 80 % and one or two representative sequences per group were chosen along with the closest publicly available sequence. Phylogeny analysis was performed on aligned sequences with MEGA4 (http://www.megasoftware.net/, Tamura et al., 2007). A neighbour-joining tree was computed from 394 common positions based
 on Kimura 2-parameter model distances using 1000 bootstrap replications. Sequences have been submitted to GenBank under accession number xxx-xxx.

3 Results

3.1 Isolation success

All together more than 1900 starter cultures were established during the BIOSOPE cruise (Table 1) either as enrichment cultures following filtration through either 0.6 or $3 \mu m$ or by sorting specific populations into individual wells or tubes. From one to three purification steps were in general necessary to obtain pure cultures (Table 2). For example, enrichment cultures started at the beginning of the cruise were sorted at the end of the cruise and then purified by serial dilution back in the laboratory.

- ¹⁵ In the end, we obtained 188 autotrophic and 24 heterotrophic cultures which have been deposited to the RCC (Table 2). Among these, 12 were subsequently lost and 25 remain not pure to this date. The latter are mostly autotrophic strains contaminated by heterotrophic eukaryotes. Cruise coverage was quite unequal with many strains obtained in mesotrophic regions and in the Chilean upwelling and much fewer from the
- ²⁰ central gyre (Table 2, Fig. 1). This reflects probably the difficulty to obtain cultures representative of extreme oligotrophic conditions, since nutrient additions even at relatively low concentrations are always much higher than those found in the environment. However this unbalanced coverage is not only the consequence of the environment but also of practical considerations. Cultures started early during the cruise had a chance to be extreme always the environment of the environment and the environment.
- screened before the end of the cruise and therefore could be re-purified on-board the ship. Conversely, cultures started late in the cruise were transported during their initial

growth phase, a period where they may be less fragile than once they have acclimated to more stable conditions. Refinements in culturing conditions that were implemented late in the cruise based upon results obtained in the first part of the cruise may also explain why our success rate was good by the end of the cruise. For example, starter 5 cultures were sorted at the beginning of the cruise into 24 or 48-well plates. By mid-

cruise, as we did not observe any growth under these conditions, we decided to switch to sorting into 10-mL tubes which seemed to result in a higher success rate.

Sorting was an important element since more than 65% of the final cultures had undergone a sorting step. The strategy that yielded most pure strains was first to establish

- ¹⁰ an enrichment culture with either 0.6 or $3 \mu m$ filtered samples followed by sorting sometimes later. In this case, it was often not necessary to perform further purification by serial dilution, saving this labour-intensive step. Sorting directly from natural samples was rarely sufficient to produce pure cultures and in most cases a second purification step had to be undertaken. It is difficult to determine whether sorting was successful in isolating the initially targeted population. We sorted sub-populations on the base
- of side scatter and chlorophyll but each of these sub-populations does not appear to be uniform genetically and consists probably of a mixture of several taxa belonging to different algal classes (Shi, X. and Marie, D., unpublished).

3.2 Culture diversity

- ²⁰ All purified cultures were examined by light microscopy, imaged digitally and their average size was determined (Table 2 and Fig. 2). No attempts were made to record measurements for a large number of cells in each cultures and these data are therefore only indicative. They confirm, however, that our efforts to target picoplankton were successful since the mode size for the culture set lies between 2.5 and 3 μ m.
- ²⁵ A large, randomly chosen, subset of cultures (115, Table 2, Table 3) was analysed phylogenetically by sequencing either partially or, in a few cases, totally the 18 S rRNA gene. A few other cultures were identified based on their phenotypic characteristics (cyanobacteria, microplanktonic species).

Representatives of cyanobacteria and of three major eukaryotic divisions containing photosynthetic organisms (stramenopiles, Chlorophyta, and Haptophyta) have been obtained in culture with the former most prevalent and the latter two in almost equal proportions (Table 4). Two dinoflagellate cultures have also been isolated.

- ⁵ Thirteen strains of unicellular rod-shaped cyanobacteria have been obtained tentatively identified as *Synechococcus*. No *Prochlorococcus* was obtained despite the use of the *Prochlorococcus* specific Pro2 medium. Some of these cyanobacterial strains form short chains, exhibiting sometimes very elongated cells (Fig. 3, RCC 1027) contrasting the usual *Synechococcus* morphology (Fig. 3, RCC 1022). Such strains mostly
- originated from the HNLC station near the Marquesas islands (Table 3) and could be interesting since samples from this region displayed an unusually high fraction of chainforming and colonial picocyanobacteria (Masquelier and Vaulot, 2007). Phylogenetic analyses of the 16 S rRNA gene will be necessary to determine the exact nature of these strains.
- ¹⁵ Chlorophyta, and more specifically Prasinophyceae, are important contributors to picoplankton and many strains have been isolated from marine waters in the past, some of them belonging to not yet described species (Guillou et al., 2004; Vaulot et al., 2004). Seventeen Chlorophyta strains have been isolated during BIOSOPE, mostly Prasinophyceae. Among these, 11 are related to *Prasinoderma coloniale* (Prasinococcales),
- a picoplanktonic species that can form colonies surrounded by mucus. These strains display the bilobed cup-shaped chloroplasts characteristics of *P. coloniale* (Hasegawa et al., 1996). However most of our strains do not seem to form colonies as *P. coloniale* does. Interestingly, one group of 9 sequences appear to form a separate clade (Fig. 4) with only 94.7% identity to *P. coloniale* (in contrast to the two other strains sharing
- 99.6% identity with *P. coloniale*) and possess large and highly similar insertions at least 330 bp long inside de 18 S rRNA gene starting at nucleotide position 862 of the *P. coloniale* sequence. Phenotypically, strains from these group appear slightly smaller (Table 2) than those closely related to *P. coloniale*. They were isolated from near-surface waters at a variety of stations, while the two strains more closely related to *P. coloniale*

BGD 4, 2699-2732, 2007 **Picoplankton** diversity in the South-East Pacific Ocean F. Le Gall et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures |**◀ Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

originated from the Marquesas area. A culture closely related to *Prasinococcus capsulatus*, a species that also belongs to the order Prasinococcales, has been recovered from the chlorophyll maximum at the GYR station. Cells display a polysaccharide capsule around the cell (Fig. 3, RCC 859), typical of this species (Miyashita et al., 1993).

- Five Prasinophyceae closely related to the picoplanktonic species *Pycnococcus provasolii* (Pseudoscourfieldiales) have been isolated from two mid-depth samples in the Chilean upwelling. Eight strains belong to clade VII A of the Prasinophyceae (Guillou et al., 2004), a group which contains some cultured strains such as CCMP 1205 but for which no species has been described formally. All these strains consist of small
- ¹⁰ (2 to 4 μ m) coccoid cells lacking discriminating features (Fig. 3, RCC 857). Two sets of strains originated from surface waters and one set from 100 m in the HNLC zone. Two Prasinophyceae strains from the Chilean upwelling belong to clade C of the very ubiquitous species *Micromonas pusilla* (Guillou et al., 2004). They possess an unusually long flagellum (Fig. 3, RCC 913) that could be a diagnostic feature for that clade
- (Jouenne, F., personal communication). Finally, one culture (RCC 999) presents some phylogenetic affinities to the Prasinophyceae but its partial 18 S rDNA sequence does not allow us to place it in any of the existing clades defined by Guillou et al. (2004). We also isolated from one sample of the Chilean upwelling, three cultures representative of another green algal class, the Trebouxiophyceae. These strains are phylogenetically related to the reacently established gopus *Piecehlarum* (Fig. 4) that regroups power and the provide the reacently established gopus *Piecehlarum* (Fig. 4) that regroups power and the provide the provide
- ²⁰ cally related to the recently established genus *Picochlorum* (Fig. 4) that regroups now salt-tolerant *Nanochlorum* (Henley et al., 2004).

All Haptophyta cultures are part of the class Prymnesiophyceae. Sixteen strains belong to the genus *Phaeocystis*, three from the upwelling region being more closely related to the species *P. jahnii* which has been recently described from the Mediterranean

²⁵ Sea (Zingone et al., 1999) and forms loose colonies and 5 from the east of the gyre and upwelling regions related to *P. globosa* that forms spherical colonies (Fig. 3, RCC 851). We also isolated 12 strains of *Emiliania huxleyi*, a few calcifying (Fig. 3, RCC 867) and most naked (Fig. 3, RCC 951), corresponding probably to diploid and haploid stages, respectively (Houdan et al., 2003). Two other unidentified coccolithophorids have also

BGD 4, 2699-2732, 2007 **Picoplankton** diversity in the South-East Pacific Ocean F. Le Gall et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures |**◀ Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

been obtained from the Marquesas and central gyre regions. Interestingly all Haptophyta strains were isolated from the top of euphotic zone (between 5 and 60 m).

Among stramenopiles, 38 cultures are closely related to the picoplanktonic species *Pelagomonas calceolata* (Pelagophyceae). More than half of them are flagellated

- ⁵ (Fig. 3, RCC 879), fitting the original description of the species (Andersen et al., 1993), and the rest, coccoid. However, the presence of a flagellum reflects probably more life cycle stages rather than taxonomical differences since both flagellated and non-flagellated strains have been isolated from the same sample (e.g. at 100 m at the HLN station). The presence of a thin theca characteristics of the species (Andersen et al., 1993).
- ¹⁰ al., 1993) was confirmed by electron microscopy on strain RCC 879. *P. calceolata* has been isolated at a variety of stations (Marquesas, HLNC, center of gyre, east of gyre and upwelling) both in surface and at 100 m, demonstrating that this species is truly ubiquitous in oceanic waters. Interestingly in the center of the South East gyre, *Pelagomonas* strains were isolated from very deep samples down to 160 m. Two
- Pelagophyceae strains (RCC 986 and 1024) with 18 S rDNA sequences displaying slightly lower similarity to *P. calceolata* (Fig. 4) were recovered at 60 m depth from the Marquesas region. Both are picoplanktonic and coccoid, not displaying any specific morphological features. We isolated a novel strain with high similarity to *Bolidomonas pacifica*, a species that belongs to the recently described class of the Bolidophyceae
- (Guillou et al., 1999), closely related to the diatoms. Its morphology (presence of 2 unequal flagella) was confirmed by electron microscopy. This is quite interesting since to our knowledge this is the first novel isolate from this class since its initial discovery. In the same manner, we isolated from Marquesas surface waters, two strains very closely related by their 18 S rDNA sequence to the recently described Dictyochophyceae pi-
- ²⁵ coplanktonic species *Florenciella parvula* (Eikrem et al., 2004). Similarity was also confirmed by electron microscopy. Two photosynthetic stramenopile strains could not be assigned to any specific class as they shared homology with both *Pinguiococcus* (Pinguiophyceae) and *Nannochloropsis* (Eustigmatophyceae). Their 18S sequences are almost identical to an environmental 18S sequence (BL000921.5) recovered from

BGD 4, 2699-2732, 2007 **Picoplankton** diversity in the South-East Pacific Ocean F. Le Gall et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures |**◀ Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Blanes Bay in the Mediterranean Sea (Fig. 4). They could belong to a new class, although the presence of refractive intracellular granules (Fig. 3, RCC 853) is quite reminiscent of what is observed in *Nannochloropsis*. Unfortunately, they have been lost in early 2007 following a breakdown in the air conditioning system of our culture facility.

⁵ Their loss, which was almost the only one from a quite large collection, attests of their sensitivity to change in environmental conditions and may explain why representatives of this group have not been isolated before.

Three diatoms, belonging to the genera *Chaetoceros* (Fig. 3, RCC 1025)*Thalassiosira*, and*Minutocellus* were obtained from the upwelling region. The latter strain is quite interesting since its very small size (about $3 \mu m$) connects it to picoplankton. Two dinoflagellates belonging to the genus *Prorocentrum*, *P. minimum* (Fig. 3, RCC 922) and *P. dentatum*, were isolated from surface waters, east of the gyre.

Twelve heterotrophic strains from dark cultures growing on rice medium have been identified by their 18 S rRNA sequences. Nine belong to the bicosoecid lineage of the stramenopiles. Three cultures are quite closely related to the genus *Caecitellus* and four more distantly related to *Cafeteria*. The two remaining strains were closely related to the bodonid (Euglenozoa) genera *Rhynchomonas* and *Neobodo*. All these genera are quite often recovered in cultures (Arndt et al., 2003).

4 Conclusions

10

Our large scale effort to isolate picoplanktonic strains from the Southeast Pacific Ocean allowed us to obtain of 212 novel cultures, a large number of which are of picoplanktonic size. The final number of cultures obtained is substantially higher than in previous efforts such as those linked to the PROSOPE and MINOS cruise in the Mediterranean Sea or the OLIPAC cruise in the Equatorial Pacific Ocean from which we obtained between 46 and 90 strains for each (Vaulot et al., 2004). Our initial intent was to use mostly flow cytometry sorting to establish this strains. However as we experienced technical problems with flow cytometry in the first few days of the cruise and as

we observed subsequently that the yield of the initially sorted samples was quite low, we decided to combine flow cytometry sorting with more classical enrichments. This proved to be quite a good recipe, especially since sorting based on photosynthetic pigment fluorescence appears as a good way to prevent contamination of cultures by heterotrophic eukaryotes, a problem plaguing some of our previous efforts. The appli-

⁵ heterotrophic eukaryotes, a problem plaguing some of our previous efforts. The application of sorting either before or after enrichment did not appear to affect dramatically the type of taxa isolated (Table 2).

The final diversity achieved is quite wide since we obtained representatives of most major photosynthetic divisions (Table 4). However it is clear that we globally failed to obtain representatives of environmental sequences for which no culture is available yet. One interesting group of novel cultures was constituted by stramenopile strains RCC 853 and 862 from the central gyre which sequences were closely related to an environmental sequence from the Mediterranean Sea (Fig. 4). Although these sequences had some affinities, based on BLAST, to Eustigmatophyceae and their morphology was

- ¹⁵ somewhat similar to the latter, they probably belonged to a novel class. Despite the fact that further studies are prevented since these strains have been lost, the strategy used (flow cytometry sorting followed by serial dilution) could be tried again to re-isolate them. Another interesting group is constituted by 9 cultures originating from the region east of the gyre and from the upwelling that are related to *Prasinoderma* but form a
- new clade clearly separated from the species *P. coloniale* (Fig. 4). They could belong to a new species within the genus *Prasinoderma* or form a new genus. Interestingly, they are apparently not related to any published environmental sequence. All the other cultures obtained are related to described species or at least to established cultures. In particular, we have been successful at re-isolating two genera *Bolidomonas* and
- *Florenciella* that our group had previously isolated and described (Eikrem et al., 2004; Guillou et al., 1999), but that had never been obtained again in culture since their initial isolation. Interestingly, *B. pacifica* was initially isolated in exactly the same region (between 2 and 16° S) as the new strain (9° S). In contrast, the only *F. parvula* strain available previously originated from English Channel coastal waters, a very different

BGD

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean

environment from that of the new strains. Moreover the 18S sequences of the latter differ slightly from that of *F. parvula* and they could belong to a novel species within this genus. Some of the cultures recovered correspond to ubiquitous species that were obtained from a wide range of environments. This is in particular the case for the two

- ⁵ Haptophyta genera *Emiliania*, isolated from two of the four major regions investigated (Marquesas, east of gyre) and *Phaeocystis* isolated from three regions (Marquesas, east of the gyre, Chilean upwelling) mostly in surface waters. For the latter genus, our strains may correspond to at least two different species, *P. globosa* and *P. jahnii*. However, the largest number of strains obtained for a single taxon correspond to
- Pelagomonas isolated from a record of 13 different samples along the entire cruise track ranging from oligotrophic (St B13) to eutrophic (UPX) and from surface (5 m) to very deep (160 m) samples. Although the similarity of their 18S rRNA gene sequence is very high (average p-distance=0.0018), it is likely that these strains present quite different growth responses to factors such as nitrogen supply or light levels and belong to different activate and provide the provide the genue.
- to different ecotypes, as observed previously for example for the genus *Ostreococcus* (Rodríguez et al., 2005).

From a biogeographic point of view, it is quite difficult to make any firm conclusion from this work. Many cultures belonging to a given taxonomic group were isolated from a variety of conditions and no specific pattern could be uncovered. Although there were some taxa unique to the central part of the gyre itself (stations 3 to 15) such as *Prasinococcus* and the potentially novel class mentioned earlier, one should emphasize the low number of strains isolated from this region. This is probably linked to the fact that the media we used (K, Pro2), that are quite successful in general to isolate and maintain a wide variety of picophytoplankton strains, fail to mimic the drastic

²⁵ oligotrophic conditions met in the gyre. Moreover future isolation effort may need to involve new culture approaches such as those successful to isolate fastidiously growing bacterial strains from the open ocean environment such as *Peligibacter ubique* (aka SAR11) that had escaped cultivation for quite a long time (Zengler et al., 2002).

Acknowledgements. We wish to thank the crew of the NO Atalante for their critical help in

repairing the FACSAria flow cytometer during the cruise as well as for their constant availability. We are grateful to all participants to the BIOSOPE cruise, especially H. Claustre and A. Sciandra, who coordinated the cruise and acted as chief scientists. Help for microscopy from F. Jouenne is kindly acknowledged. Financial support for this work was provided by the following programs and companies: ANR Biodiversité (projet PICOFUNPAC), CNRS INSU PROOF,

5 Ing programs and companies: ANR Biodiversite (projet PICOFUNPAC), CNRS INSU PROC Contrat de Plan Etat Région (Souchothèque de Bretagne), Becton Dickinson.

References

10

- Andersen, R. A., Saunders, G. W., Paskind, M. P., and Sexton, J.: Ultrastructure and 18 S rRNA gene sequence for *Pelagomonas calceolata* gen. and sp. nov. and the description of a new algal class, the Pelagophyceae *classis nov.* J. Phycol., 29, 701–715, 1993.
- Arndt, H., Hausmann, K., and Wolf, M.: Deep-sea heterotrophic nanoflagellates of the Eastern Mediterranean Sea: qualitative and quantitative aspects of their pelagic and benthic occurrence, Mar. Ecol. Prog. Ser., 256, 45–56, 2003.
- Derelle, E., Ferraz, C., Rombauts, S., Rouze, P., Worden, A. Z., Robbens, S., Partensky, F.,
- ¹⁵ Degroeve, S., Echeynie, S., Cooke, R., Saeys, Y., Wuyts, J., Jabbari, K., Bowler, C., Panaud, O., Piegu, B., Ball, S. G., Ral, J.-P., Bouget, F.-Y., Piganeau, G., De Baets, B., Picard, A., Delseny, M., Demaille, J., Van de Peer, Y., and Moreau, H.: Genome analysis of the smallest free-living eukaryote *Ostreococcus tauri* unveils many unique features, Proc. Natl. Acad. Sci. USA, 103, 11 647–11 652, 2006.
- ²⁰ Doyle, J. J. and Doyle, J. L.: Isolation of plant DNA from fresh tissue, Focus, 12, 13–15, 1990. Eikrem, W., Romari, K., Latasa, M., Le Gall, F., Throndsen, J., and Vaulot, D.: *Florenciella parvula* gen. and sp. nov. (Dictyochophyceae, Heterokontophyta) a small flagellate isolated from the English Channel, Phycologia, 43, 658–668, 2004.

Elwood, H. J., Olsen, G. J., and Sogin, M. L.: The small-subunit ribosomal RNA gene se-

- quences from the hypotrichous ciliates *Oxytricha nova* and *Stylonychia pustulata*, Mol. Biol. Evol., 2, 399–410, 1985.
 - Fuller, N. J., Marie, D., Partensky, F., Vaulot, D., Post, A. F., and Scanlan, D. J.: Clade-specific 16 S ribosomal DNA oligonucleotides reveal the predominance of a single marine *Syne-chococcus* clade throughout a stratified water column in the Red Sea, Appl. Environ. Micro-
- ³⁰ biol., 69, 2430–2443, 2003.

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean

Title Page								
Abstract	Introduction							
Conclusions	References							
Tables	Figures							
14	۶I							
•	•							
Back	Close							
Full Scre	een / Esc							
Printer-frier	Printer-friendly Version							
Interactive	Discussion							

Guillou, L., Chrétiennot-Dinet, M.-J., Medlin, L. K., Claustre, H., Loiseaux-de Goër, S., and Vaulot, D.: *Bolidomonas:* a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta), J. Phycol., 35, 368–381, 1999.

Guillou, L., Eikrem, W., Chrétiennot-Dinet, M. J., Le Gall, F., Massana, R., Romari, K., Pedrós-

- Alió, C., and Vaulot, D.: Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems, Protist, 155, 193–214, 2004.
 - Hasegawa, T., Miyashita, H., Kawachi, M., Ikemoto, H., Kurano, N., Miyachi, S., and Chihara,
 M.: *Prasinoderma coloniale* ge. nov. et sp. nov., a new pelagic coccoid prasinophyte from the western Pacific Ocean. Phycologia, 35, 170–176, 1996.
- Henley, W. J., Hironaka, J. L., Guillou, L., Buchheim, M. A., Buchheim, J. A., Fawley, M. W., and Fawley, K. P.: Phylogenetic analysis of the *"Nannochloris*-like" algae and diagnoses of *Picochlorum oklahomensis* gen. et sp nov (Trebouxiophyceae, Chlorophyta), Phycologia, 43, 641–652, 2004.

10

25

- ¹⁵ Herbland, A., Le Bouteiller, A., and Raimbault, P.: Size structure of phytoplankton biomass in the equatorial Atlantic Ocean, Deep-Sea Res. I, 32, 819–836, 1985.
 - Houdan, A., Billard, C., Marie, D., Not, F., Saez, A. G., Young, J. R., and Probert, I.: Holococcolithophore-heterococcolithphore (Haptophyta) life cycles: flow cytometric analysis of relative ploidy levels, Systematics and Biodiversity, 4, 453–465, 2003.
- Johnson, P. W. and Sieburth, J. M.: *In-situ* morphology and occurence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters, J. Phycol., 18, 318–327, 1982.
 - Johnson, Z. I., Zinser, E. R., Coe, A., McNulty, N. P., Woodward, E. M. S., and Chisholm, S. W.: Niche partitioning among *Prochlorococcus* ecotypes along ocean-scale environmental gradients, Science, 311, 1737–1740, 2006.
 - Keller, M. D., Selvin, R. C., Claus, W., and Guillard, R. R. L.: Media for the culture of oceanic ultraphytoplankton, J. Phycol., 23, 633–638, 1987.
 - Li, W. K. W., Subba Rao, D. V., Harrison, W. G., Smith, J. C., Cullen, J. J., Irwin, B., and Platt, T.: Autotrophic picoplankton in the tropical ocean, Science, 219, 292–295, 1983.
- ³⁰ López-García, P., Rodriguez-Valera, F., Pedrós-Alió, C., and Moreira, D.: Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature, 409, 603–607, 2001.
 - Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Forster, W., Brettske, I., Gerber, S., Ginhart, A. W., Gross, O., Grumann,

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean

F. Le Gall et al.

Title Page									
Abstract	Introduction								
Conclusions	References								
Tables Figures									
14	۶I								
•									
Back	Close								
Full Scre	en / Esc								
Printer-frier	Printer-friendly Version								
Interactive	Discussion								

- S., Hermann, S., Jost, R., Konig, A., Liss, T., Lussmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., and Schleifer, K. H.: ARB: a software environment for sequence data, Nucleic Acids Res., 32, 1363–1371, 2004.
- ⁵ Marie, D., Zhu, F., Balagué, V., Ras, J., and Vaulot, D.: Eukaryotic picoplankton communities of the Mediterranean Sea in summer assessed by molecular approaches (DGGE, TTGE, QPCR), FEMS Microbiol. Ecol., 55, 403–415, 2006.
 - Masquelier, S. and Vaulot, D.: Distribution of micro-organisms along a transect in the South-East Pacific Ocean (BIOSOPE cruise) from epifluorescence microscopy, Biogeosciences Discuss., accepted, 2007.

10

25

Massana, R., Balagué, V., Guillou, L., and Pedrós-Alió, C.: Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches, FEMS Microbiol. Ecol., 50, 231–243, 2004.

Miyashita, H., Ikemoto, H., Kurano, N., Miyachi, S., and Chihara, M.: Prasinococcus capsulatus

- ¹⁵ gen. et sp. nov., a new marine coccoid prasinophyte, J. Gen. Appl. Microbiol., 39, 571–582, 1993.
 - Moon-van der Staay, S. Y., De Wachter, R., and Vaulot, D.: Oceanic 18 S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity, Nature, 409, 607–610, 2001.
- Moon-van der Staay, S. Y., van der Staay, G. W. M., Guillou, L., Vaulot, D., Claustre, H., and
 Medlin, L. K.: Abundance and diversity of prymnesiophytes in the picoplankton community
 from the equatorial Pacific Ocean inferred from 18 S rDNA sequences, Limnol. Oceanogr., 45, 98–109, 2000.
 - Moore, L. R. and Chisholm, S. W.: Photophysiology of the marine cyanobacterium *Prochloro-coccus*: Ecotypic differences among cultured isolates, Limnol. Oceanogr., 44, 628–638, 1999.
 - Not, F., Valentin, K., Romari, K., Lovejoy, C., Massana, R., Töbe, K., Vaulot, D., and Medlin, L.: Picobiliphytes, a new marine picoplanktonic algal group with unknown affinities to other eukaryotes, Science, 315, 252–254, 2007.

Not, F., Massana, R., Latasa, M., Marie, D., Colson, C., Eikrem, W., Pedrós-Alió, C., Vaulot,

³⁰ D., and Simon, N.: Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents seas, Limnol. Oceanogr., 50, 1677–1686, 2005.

Palenik, B., Brahamsha, B., Larimer, F. W., Land, M., Hauser, L., Chain, P., Lamerdin, J., Regala, W., Allen, E. E., McCarren, J., Paulsen, I., Dufresne, A., Partensky, F., Webb, E. A.,

BGD								
4, 2699–2	4, 2699–2732, 2007							
Picoplankton diversity in the South-East Pacific Ocean F. Le Gall et al.								
Title Page								
Abstract Introduction								
Conclusions	References							
Tables	Figures							
14	۶I							
•	•							
Back	Close							
Full Scre	en / Esc							
Printer-frien	dly Version							
Interactive	Discussion							

and Waterbury, J.: The genome of a motile marine *Synechococcus*, Nature, 424, 1037–1042, 2003.

- Palenik, B., Grimwood, J., Aerts, A., Rouze, P., Salamov, A., Putnam, N., Dupont, C., Jorgensen, R., Derelle, E., Rombauts, S., Zhou, K., Otillar, R., Merchant, S. S., Podell, S.,
- Gaasterland, T., Napoli, C., Gendler, K., Manuell, A., Tai, V., Vallon, O., Piganeau, G., Jancek, S., Heijde, M., Jabbari, K., Bowler, C., Lohr, M., Robbens, S., Werner, G., Dubchak, I., Pazour, G. J., Ren, Q., Paulsen, I., Delwiche, C., Schmutz, J., Rokhsar, D., Van de Peer, Y., Moreau, H., and Grigoriev, I. V.: The tiny eukaryote *Ostreococcus* provides genomic insights into the paradox of plankton speciation, Proc. Natl. Acad. Sci. USA, 104, 7705–7710, 2007.
 - Platt, T., Subba-Rao, D. V., and Irwin, B.: Photosynthesis of picoplankton in the oligotrophic ocean, Nature, 300, 701–704, 1983.
 - Rippka, R., Coursin, T., Hess, W., Lichtle, C., Scanlan, D. J., Palinska, K. A., Iteman, I., Partensky, F., Houmard, J., and Herdman, M.: *Prochlorococcus marinus* Chisholm et al. (1992)
- subsp. *pastoris* subsp. nov. strain PCC 9511, the first axenic chlorophyll a_2/b_2 -containing cyanobacterium (Oxyphotobacteria), Int. J. Syst. Evol. Microbiol., 50, 1833–1847, 2000.
 - Rocap, G., Distel, D. L., Waterbury, J. B., and Chisholm, S. W.: Resolution of *Prochlorococcus* and *Synechococcus* ecotypes by using 16 S-23S ribosomal DNA internal transcribed spacer sequences, Appl. Environ. Microbiol., 68, 1180–1191, 2002.
- Rocap, G., Larimer, F. W., Lamerdin, J., Malfatti, S., Chain, P., Ahlgren, N. A., Arellano, A., Coleman, M., Hauser, L., Hess, W. R., Johnson, Z. I., Land, M., Lindell, D., Post, A. F., Regala, W., Shah, M., Shaw, S. L., Steglich, C., Sullivan, M. B., Ting, C. S., Tolonen, A., Webb, E. A., Zinser, E. R., and Chisholm, S. W.: Genome divergence in two *Prochlorococcus* ecotypes reflects oceanic niche differentiation, Nature, 424, 1042–1047, 2003.
- Rodríguez, F., Derelle, E., Guillou, L., Le Gall, F., Vaulot, D., and Moreau, H.: Ecotype diversity in the marine picoeukaryote *Ostreococcus* (Chlorophyta, Prasinophyceae), Environ. Microbiol., 7, 853–859, 2005.
 - Sieburth, J. M., Smetacek, V., and Lenz, J.: Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions, Limnol Oceanogr., 23, 1256–1263, 1978.

30

- Tamura, K., Dudley, J., Nei, M., and Kumar, S.: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol., msm092, 2007.
- Vaulot, D., Le Gall, F., Marie, D., Guillou, L., and Partensky, F.: The Roscoff Culture Collection

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean

(RCC): a collection dedicated to marine picoplankton, Nova Hedwigia, 79, 49–70, 2004.
Waterbury, J. B., Watson, S. W., Guillard, R. R. L., and Brand, L. E.: Wide-spread occurence of a unicellular, marine planktonic, cyanobacterium. Nature, 277, 293–294, 1979.
Zengler, K., Toledo, G., Rappe, M., Elkins, J., Mathur, E. J., Short, J. M., and Keller, M.: Cultivating the uncultured, Proc. Natl. Acad. Sci. USA, 99, 15681–15686, 2002.

Zingone, A., Chrétiennot-Dinet, M. J., Lange, M., and Medlin, L.: Morphological and genetic characterization of *Phaeocystis cordata* and *P. jahnii* (Prymnesiophyceae), two new species from the Mediterranean Sea, J. Phycol., 35, 1322–1337, 1999.

5

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean

F. Le Gall et al.

Title Page										
Abstract	Introduction									
Conclusions	References									
Tables	Figures									
•	•									
Back	Close									
Full Scre	en / Esc									
Printer-friendly Version										
Interactive	Interactive Discussion									

BGD

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean F. Le Gall et al.									
Title Page									
Abstract	Introduction								
Conclusions	References								
Tables Figures									
14	۶I								
•	F								
Back	Close								
Full Scr	een / Esc								
Printer-frie	ndly Version								
Interactive	Discussion								
FC									

Table 1.	Sampling	stations	and	number	of	starter	cultures	for	each	station.	Depths	are	ex-
pressed i	n meters.												

Station	Depth min	Depth max	Filtration < 0.6 μ m	Filtration <3 μ m	Sort
SE3	15	70			288
MAR	10	60	10	20	288
HLN	30	100	48	48	96
STB2	30	100			192
STB4	40	140			192
STB7	5	175			240
GYR2	5	500		8	72
STB11	0	200		12	48
STB12	40	180			48
STB13	0	160		16	
STB14	5	150			72
STB15	100	100			48
EGY2	5	80	32		112
STB17	0	20			19
STB20	5	45	16		8
STB21	5	5			4
UPW1	5	35	16		20
UPX	0	40	16		7

Table 2. List of strains deposited to the Roscoff Culture Collection (RCC) ordered according to the sampled station. Steps 1, 2 and 3 refer to the different purification steps performed before the culture was entered to the RCC database.

RCC	Lost	Station	CTD	Depth	Preculture	Class	Genus	Size	Mixed	Hetereo- trophic	Step 1	Step 2	Step 3	Sorting target	Step 1 medium
923		MAR3	22	10	273_FL1-2	Unknown	Unknown	2.5	+		TFF enriched	Serial dilution			None
959		MAR3	22	10	273_FL2-2	Unknown	Unknown	2.5			TFF enriched	Serial dilution			None
960		MAR3	22	10	273_FL2-3	Unknown	Unknown	3			TFF enriched	Serial dilution			None
961		MAR3	22	10	273_FL2-7	Unknown	Unknown	3			TFF enriched	Serial dilution			None
907		MAR3	22	60	271_FL1-4	Prasinophyceae	Prasinoderma	3.5			TFF enriched	Serial dilution			None
1000		MAR4	28	10	30 A	Prymnesiophyceae	Phaeocystis	3.5			Filtration $<3 \mu m$	Sorting		Big eukaryotes	K/100
872		MAR4	28	10	30 A2	Unknown	Unknown	3	+		Filtration $<3 \mu m$	Dilution		5 ,	K/100
1001		MAR4	28	10	30 B	Prymnesiophyceae	Emiliania	3.5			Filtration $<3 \mu m$	Sorting		Small eukarvotes	K/100
1002		MAR4	28	10	31A	Prymnesiophyceae	Phaeocvstis?	4.7	+		Filtration $<3 \mu m$	Sorting		Big eukarvotes	K/100
1003		MAR4	28	10	31 B	Unknown	Unknown	3			Filtration <3 µm	Sorting		Small eukarvotes	K/100
1004		MAR4	28	10	32 B	Prymnesiophyceae	Unknown	5			Filtration <3 µm	Sorting		Small eukarvotes	K/100
1048		MAR4	28	10	32 B2	Unknown	Unknown	3			Filtration <3 µm	Sorting		Fukarvotes	K/100
911		MAR4	28	10	32B EI 1-2	Prymnesiophyceae	Emiliania	3.5			Filtration <3 µm	Sorting	Serial dilution	Small eukarvotes	K/100
962		MAR4	28	10	32B EL 1-3	Prymnesionhyceae	Emiliania	3.5			Filtration <3 µm	Sorting	Serial dilution	Small eukaryotes	K/100
063		MARA	28	10	32B EL 2-2	Linknown	Linknown	5			Filtration <3 µm	Sorting	Serial dilution	Small eukaryotee	K/100
955		MAR4	28	10	32B HO22	Unknown	Unknown	3			Filtration <3 µm	Sorting	Microninette	Small eukaryotes	K/100
020		MARA	28	10	32B HO3	Promperionhycese	Emiliania	35			Filtration <3 µm	Sorting	Micropipette	Small eukaryotee	K/100
021		MARA	28	10	32B HO8	Prymnesionhyceae	Emiliania	3			Filtration <3 µm	Sorting	Micropipette	Small eukaryotes	K/100
1005	+	MAR/	28	10	33 4	Linknown	Linknown	0			Filtration <3 µm	Sorting	wiciopipette	Eukanyotee	K/100
10/0	F	MARA	28	10	33 42	Linknown	Linknown	2.5			Filtration <3 µm	Sorting		Eukanyotee	K/100
1049		MAD4	20	10	33 M2	Brumposionhuoono	Bhagaguatia	2.0			Filtration <2 µm	Conting		Pig oukonyotoo	K/100
054		MADA	20	10	34 A	Linknown	Linknown	0.0			Filtration <2 µm	Sorting		Big eukaryotes	K/100
050			20	10	34 DZ	Unknown	Unknown	2.0	+		Fillation (3µm	Casting	Minnelinette	Big eukai yotes	K/100
950		MAR4	20	10	34B_HU16	Driverown	Cristiania	3.5			Filtration <3 µm	Sorting	Micropipelle	Eukaryotes	K/100
912		MAR4	20	10	34B_HU17	Prymnesiopnyceae	Emmarila	4			Fillration <3 µm	Sorting	Micropipelle	Eukaryoles	K/100
957		MAR4	28	10	34B_H023	Unknown	Unknown	3.5			Filtration $<3 \mu m$	Sorting	Micropipette	Eukaryotes	K/100
914		MAR4	28	10	34B_HO5	Prymnesiopnyceae	Emiliania	3			Filtration $<3 \mu m$	Sorting	Micropipette	Eukaryotes	K/100
958		MAR4	28	10	34B_HO6	Prymnesiopnyceae	Emiliania	3.5			Flitration $<3 \mu m$	Sorting	Micropipette	Eukaryotes	K/100
916		MAH4	28	10	34B2_FL2-5	Prasinophyceae	Prasinoderma	5			Filtration $<3 \mu m$	Sorting	Serial dilution	Big eukaryotes	
1076		MAR4	28	10	37	Bicosoecid	Caecitellus	3.5		+	Flitration $<3 \mu m$				RICE/100
1007		MAH4	28	10	40 A	Dictyochophyceae	Florenciella	3.5			Filtration <0.6 μ m	Sorting		Small eukaryotes	Pro2/100
857		MAH4	28	10	40 A2	Prasinophyceae	Unknown	2.5			Filtration < 0.6 μ m	Sorting		Big eukaryotes	Pro2/100
1008		MAR4	28	10	40 B	Dictyochophyceae	Florenciella	4			Filtration < 0.6 μ m	Sorting		Big eukaryotes	Pro2/100
855		MAH4	28	10	40 B2	Pelagophyceae	Pelagomonas	3.5			Filtration <0.6 µm	Sorting		Very big eukaryotes	Pro2/100
952		MAH4	28	10	41 A2	Unknown	Unknown	2.5			Filtration <0.6 µm	Dilution			Pro2/100
1009		MAH4	28	10	41 S	Unknown	Unknown	4			Filtration < 0.6 μ m	Sorting		Small eukaryotes	Pro2/100
856		MAH4	28	10	42 A2	Prasinophyceae	Unknown	2			Filtration <0.6 µm	Sorting		Small eukaryotes	Pro2/100
954		MAH4	28	10	43 A2	Unknown	Unknown	2.5			Filtration < 0.6 μ m	Dilution			Pro2/100
1010		MAR4	28	10	43 PK	Pelagophyceae	Pelagomonas	3			Filtration < 0.6 μ m	Sorting		Prochlorococcus	Pro2/100
953		MAR4	28	10	44 A2	Pelagophyceae	Pelagomonas	3			Filtration < 0.6 μ m	Dilution			Pro2/100
989		MAR4	28	60	15 A	Unknown	Unknown	3			Filtration $<3 \mu m$	Sorting		Small eukaryotes	K/100
982		MAR4	28	60	15 A2	Unknown	Unknown	2.5	+		Filtration <3 μ m	Dilution			K/100
965		MAR4	28	60	16B_FL2-1	Bodonid	Unknown	5		+	Filtration <3 μ m	Sorting	Serial dilution	Prochlorococcus	Pro2/100
983		MAR4	28	60	17 A2	Unknown	Unknown	2			Filtration <3 μ m	Dilution			K/100
990		MAR4	28	60	17 B	Unknown	Unknown	2.5			Filtration <3 μ m	Sorting		Small eukaryotes	K/100
991		MAR4	28	60	18 A	Unknown	Unknown	2.5			Filtration $<3 \mu m$	Sorting		Small eukaryotes	K/100
992		MAR4	28	60	18 B	Prymnesiophyceae	Phaeocystis	3.5			Filtration $<3 \mu m$	Sorting		Big eukaryotes	K/100
993		MAR4	28	60	19 B	Prymnesiophyceae	Phaeocystis	3			Filtration $<3 \mu m$	Sorting		Big eukaryotes	K/100
994		MAR4	28	60	19 C	Prymnesiophyceae	Phaeocystis?	5			Filtration $<3 \mu m$	Sorting		Prochlorococcus	K/100
1073	+	MAR4	28	60	22	Unknown	Unknown			+	Filtration $<3\mu m$				Rice/100
984		MAR4	28	60	25 A2	Unknown	Unknown	2			Filtration <0.6 μ m	Dilution			Pro2/100
1024		MAR4	28	60	25B2	Pelagophyceae	Unknown	4			Filtration <0.6 μ m	Dilution			Pro2/100
985		MAR4	28	60	26 A2	Pelagophyceae	Pelagomonas	2			Filtration <0.6 µm	Dilution			Pro2/100
986		MAR4	28	60	27A2	Pelagophyceae	Pelagomonas	2.5			Filtration <0.6 µm	Dilution			Pro2/100
1043		HLN3	51	30	47 B1	Unknown	Unknown	3.5			Filtration $<3\mu m$	Dilution			K/10
1011		HLN3	51	30	47C1S	Unknown	Unknown	2.5			Filtration $<3\mu m$	Sorting		Small eukaryotes	K/100
852		HLN3	51	30	47 C2	Bolidophyceae	Bolidomonas	2			Filtration $<3\mu m$	Dilution			K/100
1044	+	HLN3	51	30	47 C3	Unknown	Unknown				Filtration $<3\mu m$	Dilution			K/100
1045	+	HLN3	51	30	47 D1	Unknown	Unknown				Filtration $<3\mu m$	Dilution			K/100
1030		HLN3	51	30	48 A2Y	Cyanophyceae	Synechococcus	1			Filtration <0.6 µm	Sorting		Synechococcus	Pro2/10
850		HLN3	51	30	48 A5	Unknown	Unknown	2			Filtration <0.6 µm	Dilution			Pro2/10
1046		HLN3	51	30	48 A6	Unknown	Unknown	3			Filtration <0.6 µm	Dilution			Pro2/10
1027		HLN3	51	30	48 B3Y	Cyanophyceae	Synechococcus	1			Filtration <0.6 µm	Sorting		Synechococcus	Pro2/10
1012		HLN3	51	30	48 B6V	Unknown	Unknown	10			Filtration <0.6 µm	Sorting		Very big eukaryotes	Pro2/10
1031		HLN3	51	30	48 B6Y	Cyanophyceae	Synechococcus	1			Filtration <0.6 µm	Sorting		Synechococcus	Pro2/10
											P.	~			

BGD

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean F. Le Gall et al.

Table 2. Continued.

RCC	Lost	Station	CTD	Depth	Preculture	Class	Genus	Size	Mixed	Hetereo- trophic	Step 1	Step 2	Step 3	Sorting target	Step 1 medium
1013		HLN3	51	30	48 C1S	Pelagophyceae	Pelagomonas	2			Filtration < 0.6 μ m	Sorting		Small eukaryotes	Pro2/100
858		HLN3	51	30	48 C3	Unknown	Unknown	2.5			Filtration <0.6 µm	Dilution			Pro2/100
1014		HLN3	51	30	48 D5V	Unknown	Unknown	2.5			Filtration <0.6 µm	Sorting		Very big eukaryotes	Pro2/100
1010		HLN3	51	100	45 A2 475	Pelagopnyceae	Pelagomonas	1.5			Filtration <3 µm	Dilution			K/10
005		HLN3	51	100	45 42 47 6	Pelagophyceae	Pelacomonae	2.5			Fillration <3 µm	Sorting		Small aukanuotee	K/10
881		HLN3	51	100	45 A3E	Pelagophyceae	Pelagomonas	2.5			Filtration <3 µm	Dilution		onian eukaryotea	K/10
883		HLN3	51	100	45 A5	Pelagophyceae	Pelagomonas	2			Filtration <3 μ m	Dilution			K/10
879		HLN3	51	100	45 B2E	Pelagophyceae	Pelagomonas	2.5			Filtration <3 μ m	Sorting		Eukaryotes	K/10
1016		HLN3	51	100	45 B4 461	Cyanophyceae	Synechococcus	1			Filtration <3 µm	Dilution			K/10
1061		HLN3	51	100	45 B4 462	Pelagophyceae	Pelagomonas	2			Filtration <3 μ m	Dilution			K/10
1017		HLN3	51	100	45 B5 463	Cyanophyceae	Synechococcus	1			Filtration <3 μ m	Dilution			K/10
1062		HLN3	51	100	45 B5 464	Pelagophyceae	Pelagomonas	2.5			Filtration <3 µm	Dilution			K/10
1018		HLN3	51	100	45 B6 465	Cyanophyceae	Synechococcus	1			Filtration <3 µm	Dilution			K/10
1020		HLN3	51	100	45 B0 400	Cyapophyceae	Synachococcue	2.0			Fillration <3 µm	Sorting		Sunachococcue	K/10
996		HLN3	51	100	46 B4S	Prasinophyceae	Unknown	3			Filtration <0.6 µm	Sorting		Small eukarvotes	Pro2/10
997		HLN3	51	100	46 B5S	Prasinophyceae	Unknown	2			Filtration < 0.6 µm	Sorting		Small eukarvotes	Pro2/10
1021		HLN3	51	100	46 B6	Prasinophyceae	Unknown	4			Filtration <0.6 µm	Dilution			Pro2/10
1032		HLN3	51	100	46 B7	Prasinophyceae	Unknown	4			Filtration <0.6 µm	?			Pro2/10
998		HLN3	51	100	46 C3S	Prasinophyceae	Unknown	2.5			Filtration < 0.6 μ m	Sorting		Small eukaryotes	Pro2/100
999		HLN3	51	100	46 C4S 144	Prasinophyceae ?	Unknown	2.5			Filtration <0.6 µm	Sorting		Small eukaryotes	Pro2/100
859		GYR2	87	180	74 A5	Prasinophyceae	Prasinococcus	4			Sorting	Dilution		Small eukaryotes	K/100
803	+	GTR2	87	180	74 D I 74 D 4	Unknown stramenopile	Unknown	2.5			Sorting	Dilution		Small eukaryotes	K/100
863	-	GYR2	87	180	74 D4 74 D5	Unknown	Unknown	3			Sorting	Dilution		Small eukaryotes	K/100
964	•	GYB2	87	300	70 FL 1-1	Unknown	Unknown	2.5			Filtration <3 µm	Serial dilution		omail ounaryotoo	K/100
1065		GYR2	87	300	71	Bodonid	Unknown	4		+	Filtration <3 μ m				Rice/100
1068		GYR2	87	300	72	Unknown	Unknown	3		+	Filtration <3 μ m				Rice/100
987		STB11	121	200	79 A2	Unknown	Unknown	3	+		Filtration <3 µm	Dilution			K/100
1079		STB11	121	200	83	Bicosoecid	Unknown	3		+	Filtration <3 μ m				Rice/100
862	+	STB12	125	40	90 A6	Unknown stramenopile	Unknown	2.5			Sorting	Dilution		Small eukaryotes	ĸ
1066		STB13	129	0	105	Unknown	Unknown	3		+	Filtration <3 µm	o .:			Rice/100
908		SIBI3 CTD12	129	160	92 B	Pelagophyceae	Pelagomonas	2.5			Filtration <3 µm	Sorting		Big eukaryotes	K/100
1077		STB13	129	160	93 B 97	Bicosoecid	Linknown	3		+	Filtration <3 µm	Sorung		big eukalyotes	Rice/100
988		STB13	129	160	98 A	Pelagophyceae	Pelagomonas	2.5			Filtration $<3 \mu m$	Dilution			Add Fe and P
866		STA14	132	5	108 B1	Prymnesiophyceae	Unknown	4	+		Sorting	Dilution		Small eukaryotes	K; K/100
971		STB14	133	150	109 A1	Pelagophyceae	Pelagomonas	2			Sorting	Dilution		Small eukaryotes	K; K/100
972		STB14	133	150	109 B1	Pelagophyceae	Pelagomonas	2			Sorting	Dilution		Big eukaryotes	K; K/100
973		STB14	133	150	109 B2	Pelagophyceae	Pelagomonas	2.5			Sorting	Dilution		Big eukaryotes	K; K/100
974		STB14	133	150	109 B3	Pelagophyceae	Pelagomonas	2.5			Sorting	Dilution		Big eukaryotes	K; K/100
1022		STB14	133	150	109 C2	Cyanophyceae	Synechococcus	1			Sorting	Dilution		Synechococcus	Pro2; Pro2/100
9/5		SIBI4	135	100	111 P1	Pelagophyceae	Cofetorio	2.5			Sorting	Dilution		Very small eukaryotes	K; K/100
980		STB15	137	100	111 B2	Pelagonhyceae	Pelanomonas	2		+	Sorting	Dilution		Small eukaryotes	K, K/100
981		STB15	137	100	111 C1E	Pelagophyceae	Pelagomonas	2			Sorting	Dilution		Big eukarvotes	K: K/100
978		STB15	137	100	111 D1E	Pelagophyceae	Pelagomonas	2	+		Sorting	Dilution		Big eukaryotes	K; K/100
1023		STB15	137	100	112 B6	Cyanophyceae	Synechococcus	1			Sorting	Dilution		Synechococcus	Pro2; Pro2/100
869		EGY2	146	5	121 A	Pelagophyceae	Pelagomonas	2.5			Filtration < 0.6 μ m	Sorting		Small eukaryotes	K/100
870	+	EGY2	146	5	121 B	Prymnesiophyceae	Phaeocystis	5			Filtration < 0.6 μ m	Sorting		Big eukaryotes	K/100
938		EGY2	146	5	122 A	Pelagophyceae	Pelagomonas	2			Filtration <0.6 µm	Sorting		Small eukaryotes	K/100
940		EGY2	140	5	122 0	Prymnesionbyceae	r ndeocysus Emiliania	0			Filtration <0.6 µm	Sorting		Big eukaryotes	K/100
1051		EGY2	146	5	123 4	Linknown	Unknown	3			Filtration <0.6 µm	Sorting		Small eukarvotes	Pro2/100
939		EGY2	146	5	123 B	Pelagophyceae	Pelagomonas	3			Filtration <0.6 µm	Sorting		Big eukarvotes	Pro2/100
1072		EGY2	146	5	125	Bicosoecid	Caecitellus	3.5		+	Filtration < 0.6 µm				Rice/100
1078		EGY2	146	5	126	Bicosoecid	Caecitellus	3.5		+	Filtration <0.6 µm				Rice/100
1052		EGY2	146	5	129 A1 545	Unknown	Unknown	2.5			Sorting	Dilution		Very small eukaryotes	K; K/100
1053		EGY2	146	5	129 A2	Unknown	Unknown	2.5			Sorting	Dilution		Very small eukaryotes	K; K/100
864		EGY2	146	5	129 A3	Unknown	Unknown	2			Sorting	Dilution		Very small eukaryotes	K; K/100
860		EGY2	146	5	129 B1	relagophyceae	relagomonas	2			Sorting	Dilution		very small eukaryotes	K; K/100
1035		EGY2 EGY2	146	5	129 B2 129 B3 661	Unknown	Unknown	2.5	+		Sorting	Dilution		Very small eukaryotes	N; K/100
861		EGY2	140	5	129 03 001	Prymnesionhyceae	Phaeocystis	3	+		Sorting	Dilution		Small eukaryotes	K: K/100
1037		EGY2	146	5	129 C1 662	Unknown	Unknown	2.5			Sorting	Dilution		Small eukarvotes	K: K/100
865		EGY2	146	5	129 C2B	Pelagophyceae	Pelagomonas	3			Sorting	Sorting		Eukaryotes	K; K/100
867		EGY2	146	5	130 A1	Prymnesiophyceae	Emiliania	5			Sorting	Dilution		Eukaryotes	K; K/100
874		EGY2	146	5	130 A1BC	Unknown	Unknown	4			Sorting	Sorting		Eukaryotes	K; K/100
875		ÉGY2	146	5	130 A1E	Pelagophyceae	Pelagomonas	3			Sorting	Sorting		Eukaryotes	K; K/100

BGD

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean

Table 2. Continued.

1071 EV2 144 00 116 Biscosofd Catebrain 3 + Fittation <0.0 µm	RCC	Lost	Station	CTD	Depth	Preculture	Class	Genus	Size	Mixed	Hetereo- trophic	Step 1	Step 2	Step 3	Sorting target	Step 1 medium
1776 EX71 154 80 111 A Pelagophysee Pelagophysee Sorting Duttorn Small exlaryotes K. K100 977 EX71 154 80 131 A Pelagophysee Fulgomonas 2 Sorting Duttorn Small exlaryotes K. K100 977 EX71 154 80 131 A Pelagophysee <	1071		EGV2	146	80	118	Bicocoacid	Cafataria	3			Eiltration <0.6 um				Rice/100
1979 EXY 154 80 151 A Pelagomoras 2 Sorting Dilution State shurphing K1 K100 873 EXY 154 80 116 Pelagomoras 2.5 Sorting Dilution State shurphing K1 K100 873 EXY 152 40 14.0 A Unknom 2.5 State shurphing State shurphing State shurphing State shurphing State shurphing State shurphing K100 1055 EXY 152 40 14.1 Luknom 2.5 Filtation < 0.5 µm	976		EGV2	154	80	131 41	Pelagonhyceae	Pelacomonae	25		+	Sorting	Dilution		Small eukaryotes	K K/100
bit 3 EGV 164 B0 131 BT Philographyceas Philogramonas 2.5 Sorting Dilucin Big aukaryotes K1100 B97 EGV4 162 40 140 A Hitterion 2.5 Sorting Dilucin Big aukaryotes K1100 B97 EGV4 162 40 140 A Universe Sorting Sorting <td>979</td> <td></td> <td>EGY3</td> <td>154</td> <td>80</td> <td>131 43</td> <td>Pelagophyceae</td> <td>Pelagomonas</td> <td>2.5</td> <td></td> <td></td> <td>Sorting</td> <td>Dilution</td> <td></td> <td>Small eukaryotes</td> <td>K: K/100</td>	979		EGY3	154	80	131 43	Pelagophyceae	Pelagomonas	2.5			Sorting	Dilution		Small eukaryotes	K: K/100
Bits Edvi 162 Pittade of 6, m Soring Sindi extrayoles K100 B11 Edvi 162 4 164 No Pittade of 6, m Soring Bit autaryoles K100 B15 Edvi 162 4 164 No Pittade of 6, m Soring Bit autaryoles K100 B17 Edvi 162 4 141 Department 2.3 Fittation of 6, m Soring Bit autaryoles K100 B103 Edvi 162 4 141 Department 5.3 Fittation of 6, m Soring Bit autaryoles K100 B104 Edvi 164 Alt Alt D1 Unknorn 1 Fittation of 6, m Bit autaryoles K100 B105 Edvi 162 4 164 Alt Alt D1 Unknorn 1 Soring Duknor Bit autaryoles K100 B105 Kallanyoles K100 Soring Duknorn Soring Duknoryoles K100	977		EGY3	154	80	131 B1	Pelagophyceae	Pelagomonas	2.5			Sorting	Dilution		Big eukarvotes	K: K/100
Bit I Edv 162 4 6 100 Pynnesice/pycea Entitiania 3.5 Fittation < 0.6 µm Soring Eskaryolas K100 1007 Edv 162 0 Pintation < 0.6 µm Soring Bit alkaryolas K100 1007 Edv 162 0 Pintation < 0.6 µm Soring Bit alkaryolas K100 1007 Edv 162 0 141 Dynophycea Synchrococcur Fittation < 0.6 µm Soring Soring Soring Synchrococcur Fittation < 0.6 µm 1068 Edv/ 162 0 445 Bitsator 1 Fittation < 0.6 µm Soring Soring Soring Soring Soring Soring Bitsator K (K10) 878 Edv/ 162 0 448 162 Unitore 1 Soring Dialion Bitsator K (K10) 877 Edv/ 162 0 163 163 163 163 163 163 163	873		EGY4	162	40	140 A	Unknown	Unknown	2			Filtration < 0.6 µm	Sorting		Small eukarvotes	K/100
BY1 ECV BE3 Hinton - C.B.T Filtaton - C.B.T Bindon	951		EGY4	162	40	140 B	Prvmnesiophyceae	Emiliania	3.5			Filtration < 0.6 µm	Sorting		Eukarvotes	K/100
1950 EGV 162 40 141 A Unixom 2.5 Filtation < 0.6 µm Sorting Sinal subaryotes K100 1123 EGV 162 40 141 D Canachybrean Sinal subaryotes K100 1123 EGV 162 40 141 D Canachybrean Sinal subaryotes K100 1123 EGV 162 40 144 D.C1-1 Unixom 1 * Sorting Dilation Pain Sinal subaryotes K.K100 1165 EGV4 162 40 148 D.62 Unixom Unixom 1 Sorting Dilation Pain Sinal subaryotes K.K100 1167 EGV4 162 40 148 D.62 Unixom Unixom 1 Sorting Dilation Pain Big subaryotes K.K100 1167 EGV4 162 168 Unixom Unixom 1 + Sorting Dilation Pain Big subaryotes K.K100 1168	871		EGY4	162	40	140 C	Pelagophyceae	Pelagomonas	2.5			Filtration < $0.6 \mu m$	Sorting		Big eukarvotes	K/100
937 EGV 162 414 B Pelagophysaa Pelagononas 3 Filtation < 0.6 µm Soring Big eukaryotes K100 11668 EGV 162 44 44 166 Bicasonod Filtation < 0.6 µm	1050		EGY4	162	40	141 A	Unknown	Unknown	2.5			Filtration <0.6 µm	Sorting		Small eukaryotes	K/100
1129 EGV 4 124 40 141 D Cyanophyceae Synchoscocci 1 Filtation - 0.6 µm Sorting Synchoscocci K100 1056 EGV 4 162 44 164 AG 1-1 Unknown 1 String Dilution Palan String and subaryotics K: K100 876 EGV 4 162 40 144 BE 60 Unknown 4 String Dilution Big eukaryotis K: K100 877 EGV 4 162 40 144 BE 60 Unknown 4 + String Dilution Big eukaryotis K: K100 1070 EGV 4 162 0 136 Unknown 4 + Filtation : 0.6 µm Synchoscocci No	937		EGY4	162	40	141 B	Pelagophyceae	Pelagomonas	3			Filtration <0.6 µm	Sorting		Big eukaryotes	K/100
1668 EGV HE All ALCI I. Dicknown Sarting All All ALCI I. Dicknown Plating All All Plating All All All All All All All All All Al	1029		EGY4	162	40	141 D	Cyanophyceae	Synechococcus	1			Filtration <0.6 µm	Sorting		Synechococcus	K/100
1654 EC4 162 40 148 ALC12 Unknown 5 Soring Diuton Plating Small sukaryotes K. K100 1675 EC4/4 162 40 148 ALC12 Unknown 4 Soring Diuton Plating Small sukaryotes K. K100 1677 EC4/4 162 40 148 B2E Unknown 4 Soring Big sukaryotes K. K100 1628 EC4/4 162 40 148 B2E Unknown 4 Soring Diuton Synchcococus Pro2. Pro2. 1628 EC4/4 162 40 148 B2E Unknown 4 * Soring Diuton Yery small sukaryotes Kr 10 1639 ST117 77 62 163 Unknown 4 * Soring Yery small sukaryotes Kr 10 164 STB20 191 5 177 72 160 * Soring Yery small sukaryotes Kr 10 164 STB20	1069		EGY4	162	40	145	Bicosoecid	Unknown	5		+	Filtration < 0.6 μ m				Rice/100
1655 EGV 162 40 148 11 42 Unknown 7 Soring Diuton Plaing Small sukaryotes K, K100 677 EGV 162 4 148 11 42 Unknown 4 * Soring Diuton Big sukaryotes K, K100 677 EGV 162 4 148 13 42 Unknown 4 * Soring Diuton Big sukaryotes K, K100 1070 EGV 162 8 148 03 Cynophycase Procestram Filaston Soring Very small sukaryotes K10 1038 STB17 78 20 153 Unknown 4 * Filaston Soring Very small sukaryotes K10 1040 STB20 195 184 Unknown 3 * Soring Very small sukaryotes K10 1044 STB20 195 194 Unknown 3 * Soring Small sukaryotes K10 1044 STB20	1054		EGY4	162	40	148 A1C1-1	Unknown	Unknown	5			Sorting	Dilution	Plating	Small eukaryotes	K; K/100
B77 EGV1 f162 40 148 B2.60 Unknown Unknown 3 + Sorting Dilution Big eukaryotes K.K100 177 EGV1 f162 40 148 B2.60 Unknown Unknown Sorting Dilution Big eukaryotes K.K100 1707 EGV1 f162 40 148 B2.60 Unknown + Filtation < 0.5 µm	1055		EGY4	162	40	148 A1C1-2	Unknown	Unknown	7			Sorting	Dilution	Plating	Small eukaryotes	K; K/100
B76 ECV1 EE 40 148 B260 Unknown Unknown 4 Sorting Diution Big eukaryotes K // 100 1778 ECV1 162 0 148 B26 Unknown 4 Filadon < 0.5 µm	878		EGY4	162	40	148 B1 602	Unknown	Unknown	3	+		Sorting	Dilution		Big eukaryotes	K; K/100
677 EGV4 HE 40 148 DB Unknown Jinnown 3 + Sorting Sorting Big exlaryotes K/100 1020 EGV4 HE 80 110 + Filtable Sorting Sorting Syntechococcus Pac2; Pac2 1081 + EGV4 HE 80 110 + Filtable Sorting Big exlaryotes K/10 1038 STB17 778 20 153 Unknown 1 uknown 3 + Sorting Big exlaryotes K/10 1044 STB20 190 5 184 Unknown 1 uknown + Sorting Sorting Big exlaryotes K/10 1044 STB20 191 5 184 Unknown 4 + Filtable n-0.0 gm Sortial dilution Pac2; Pac	876		EGY4	162	40	148 B2 600	Unknown	Unknown	4			Sorting	Dilution		Big eukaryotes	K; K/100
1228 EOV Itel 4 9 Bitlation Syntheboccaus Pro2.Pro2. 1071 E.V.1 168 1014novm 1 Filtation - 0.0 µm Piltation -	877		EGY4	162	40	148 B2E	Unknown	Unknown	3	+		Sorting	Sorting		Big eukaryotes	K; K/100
1070 EGV1 Itel 2 101 Unknown Unknown 4 + Filtation -0.6 µm Particular Red/100 1038 STB17 178 20 153 Unknown 3 + String Very small eukaryotes K10 1038 STB17 178 20 153 Unknown 3 + Sorting Very small eukaryotes K10 1040 STB2 190 5 184 Unknown 4 + Filtation -0.6 µm Small eukaryotes K10 1041 STB2 191 5 179-L1-2 Unknown 4 + Filtation -0.6 µm Small eukaryotes K10 909 STB2 191 5 179-L1-2 Unknown 3.5 + Filtation -0.6 µm Small eukaryotes Pro2/100 918 STB2 191 1 182-L1-1 Unknown 1.5 + Filtation -0.6 µm Small eukaryotes K10 922 STB2 191 <t< td=""><td>1028</td><td></td><td>EGY4</td><td>162</td><td>40</td><td>148 D3</td><td>Cyanophyceae</td><td>Synechococcus</td><td>1</td><td></td><td></td><td>Sorting</td><td>Dilution</td><td></td><td>Synechococcus</td><td>Pro2; Pro2/100</td></t<>	1028		EGY4	162	40	148 D3	Cyanophyceae	Synechococcus	1			Sorting	Dilution		Synechococcus	Pro2; Pro2/100
1019 + Extrat No. Normation + Frankation CD, B, JM 0139 STB17 178 20 153 Unknown 3 + Sorting High red A green fluoresconing K10 0440 STB20 190 5 184 Unknown + Sorting Very small eukaryotes K10 1041 + STB20 191 5 184 Unknown + Sorting Sorting Small eukaryotes K10 1041 + STB20 191 5 179,FL1.3 Unknown Unknown + Filtration <0.6 µm	1070		EGY4	162	80	136	Unknown	Unknown	4	+		Filtration <0.6 µm				Rice/100
1038 S1B17 718 20 104 Unknown Unknown Unknown 3 + Sorting Work state Notal K10 1044 STB20 190 5 184 Unknown 1 Sorting Work state K10 1041 + STB20 190 5 185 Unknown Work state Work state K10 909 STB20 191 5 179, FL1-2 Unknown Wirksom + Sorting Sorting Sorting Small eukaryotes K10 919 STB20 191 5 179, FL2-1 Unknown Unknown 1.5 + Filtration < 0.6 µm	1081	+	EGY4	162	80	137	Unknown	Unknown	~		+	Filtration <0.6 µm				Rice/100
Index STB17 1/2 2/2 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 0 1/2 0 0 1/2 0 0 0 1/2 0 <th< td=""><td>1038</td><td></td><td>SIB1/</td><td>178</td><td>20</td><td>150</td><td>Unknown</td><td>Unknown</td><td>3</td><td></td><td>+</td><td>Sorting</td><td></td><td></td><td>Very small eukaryotes</td><td>K/10</td></th<>	1038		SIB1/	178	20	150	Unknown	Unknown	3		+	Sorting			Very small eukaryotes	K/10
bead Starty Ind 20 Isa Unitoxim 12 Softing High Ted & given nubreschning N 10 1041 + Stread 11 10 2 Stread N 10 1041 + Stread 11 5 18 N 10 Stread N 10 1041 + Stread 11 5 18 N 10 Stread N 10 Stread N 10 Stread N 10 1041 + Stread 11 Stread N 10 N 10 Stread N 10 N 10 </td <td>1039</td> <td></td> <td>SIBI/</td> <td>178</td> <td>20</td> <td>153</td> <td>Diseastructure</td> <td>Onknown</td> <td>3</td> <td></td> <td>+</td> <td>Sorting</td> <td></td> <td></td> <td>Big eukaryotes</td> <td>K/10</td>	1039		SIBI/	178	20	153	Diseastructure	Onknown	3		+	Sorting			Big eukaryotes	K/10
	1040		STD1/	100	20	100	Uniopriyceae	Prorocentrum	15			Sorting			High red & green hubrescencing	K/10
1001 * 3 STR20 100 S Filtering Distance Adaptes Processor 1019 STR20 101 S 172 FL1.2 Unknown 4 * Strate Strate Strate Strate Processor Processor 1018 STR20 191 S 5 172 FL1.2 Unknown Unknown A Filtration < 0.6 µm Serial dilution Processor Processor 1024 STR20 191 S 5 182 FL1.1 Dinophyceae Procesort/wm 1.4 Filtration < 0.6 µm Serial dilution Add Fe and 923 STR20 191 S 182 FL1.1 Dinophyceae Procesort/wm 3.5 Filtration < 0.6 µm Serial dilution Add Fe and 924 STR20 191 40 108 FL2.2 Unknown 1.4 Filtration < 0.6 µm Serial dilution Mdd Fe and 924 STR20 191 40 173 FL1.4 Promesophyceae Prainform 3.5 Filtration < 0.6 µm Serial dilution Serial dilution Serial dilution Ser	1040		STD20	100	5	104	Unknown	Unknown	3		+	Sorting			Small aukaryotaa	K/10
a strage	000	+	STD20	101	5	170 EL 1 0	Unknown	Unknown	4		+	Eiltration (0.6 um)	Corial dilution		Sinai eukaryotes	R/10 Bro2/100
918 STB20 191 5 179 FL21 Unknown 3.5 + Filtration < C0.6 µm	010		STB20	101	5	179_FL1=2	Unknown	Unknown	6	+		Filtration <0.6 µm	Serial dilution			Pro2/100
1044 STB20 191 5 181 Bioscoecid Cancilalus 2 + Filtration < 0.6 µm Serial dilution Add Fe and 922 STB20 191 5 182/FL1-3 Prasinophyceae Procentum 14 + Filtration < 0.6 µm	918		STB20	191	5	179 FL 2-1	Unknown	Unknown	35	+		Filtration <0.6 µm	Serial dilution			Pro2/100
122 STB20 191 5 182, FL1-1 Dinophyceae Procentum 14 Filtation < 0.6 µm Serial dilution Add Fe and 921 STB20 191 40 168, FL2-2 Unknown 3 Filtation < 0.6 µm	1064		STB20	191	5	181	Bicosoecid	Caecitellus	2		+	Filtration <0.6 µm	oonar allation			Bice/100
917 STB20 191 5 182, FL1-3 Prasinophyceae Unknown 15 + Filtration < 0.6 µm Serial dilution Add Fe and 941 STB20 191 40 169, FL2-4 Prasinophyceae Prasinoderma 7 3.5 Filtration < 0.6 µm	922		STB20	191	5	182 FI 1-1	Dinophyceae	Prorocentrum	14			Filtration < 0.6 µm	Serial dilution			Add Fe and P
928 STB20 191 40 169,FL22 Unknown 3 Filtation < 0.6 µm Serial dilution K/100 1075 + STB20 191 40 169,FL22 Prainophycee Praino	917		STB20	191	5	182_FL1-3	Prasinophyceae	Unknown	1.5	+		Filtration < 0.6 µm	Serial dilution			Add Fe and P
941 STB20 191 40 169,F12-4 Prasinophyceae	928		STB20	191	40	169_FL2-2	Unknown	Unknown	3			Filtration < 0.6 µm	Serial dilution			K/100
1075 * STR20 191 40 173 Unknown Unknown * Filtration < 0.6 j/m	941		STB20	191	40	169_FL2-4	Prasinophyceae	Prasinoderma ?	3.5			Filtration <0.6 µm	Serial dilution			K/100
948 STB20 191 40 17 S, FL24 Pymesiophyceae Emiliania 3.5 Filtration 3.6 µm Serial allulion Serial allulion Mode Feature	1075	+	STB20	191	40	173	Unknown	Unknown			+	Filtration <0.6 µm				Rice/100
1042 STB21 194 5 189 Unknown 3 Sorting Elig eukaryotes K/10 1056 STB21 194 5 190 C22 Unknown 4 + Sorting Plaing Green, yellow and red fluorescencing K/10 1057 STB21 194 5 190 C22 Unknown 4 + Sorting Plaing Green, yellow and red fluorescencing K/10 849 UPW1 198 5 193 Prymnesiophyceae Phaeocystis 3 + Sorting Synechococcus Synechococcus Prymesiophyceae Phaeocystis 3 + Sorting Synechococcus Prymesiophyceae Phaeocystis 4 Sorting Synechococcus Prymesiophyceae Phaeocystis 4 Sorting Sorting Very big eukaryotes Phaeocystis 5 + Filtration <0.6 µm	948		STB20	191	40	175_FL2-4	Prymnesiophyceae	Emiliania	3.5			Filtration <0.6 µm	Serial dilution			Add Fe and P
1056 STB2 1194 5 190 C2-1 Unknown 3 + Sorting Plaing Green, yallow and red fluorescencing K/10 910 STB2 194 5 190 C2-2 Unknown 4 Sorting Plaing Green, yallow and red fluorescencing K/10 910 STB2 194 5 190 FL2-4 Prasinophyceae Prasinophyceae Sorting Sorting Sorting ELkayotlos K/10 1026 UPW1 188 5 194 Baallanophyceae Chaetocoros 1 Sorting Sorting Synechococcus Pro2/10 924 UPW1 188 5 222, FL2-3 Promesiophyceae Phaeocystis 5 Flitation <0.6 µm	1042		STB21	194	5	189	Unknown	Unknown	3			Sorting			Big eukaryotes	K/10
1057 STB21 194 5 190 C2-2 Unknown 4 + Sorting Plaing Green, yellow and red fluorescencing K/10 849 UPW1 198 5 190, F2-4 Prasnophyceae Phaeocystis 3 + Sorting Sorting Synechococcus K/10 1026 UPW1 198 5 193 Orgenphyceae Phaeocystis 3 + Sorting Synechococcus Synechococcus Pro2/10 1026 UPW1 198 5 199 Cyanophyceae Synechococcus 1 Sorting Synechococcus Pro2/10 924 UPW3 210 5 222, FL1 Hinknown Uknown 2 + Filtation <06 µm	1056		STB21	194	5	190 C2-1	Unknown	Unknown	3	+		Sorting	Plating		Green, yellow and red fluorescencing	K/10
910 STB2: 194 5 190, FL2: Prasinophyceae Prasinophyceae Prasinophyceae Sorting Sorting Sorting Eukayotes K10 1025 UPW1 198 5 194 Baillariophyceae Chaetocoros 15 Sorting Sorting Synehcococcus Pro2/10 1026 UPW1 198 5 202 Prymnesiophyceae Phaecoystis 4 Sorting Synehcococcus Pro2/10 851 UPW1 198 5 222, FL2: Pelagophyceae Phaecoystis 4 Sorting Sorting Very big sukaryotes K10 924 UPW3 210 5 222, FL2: Prymesiophyceae Phaecoystis 5 Flittation <0.6 µm	1057		STB21	194	5	190 C2-2	Unknown	Unknown	4	+		Sorting	Plating		Green, yellow and red fluorescencing	K/10
649 UPW1 198 5 193 Prymesiophyceae Phaeocysis 3 + Sorting Eukayotes K10 1025 UPW1 198 5 199 Cyanophyceae Sorting Synechococcus Pro2/10 1026 UPW1 198 5 199 Cyanophyceae Synechococcus 1 Sorting Synechococcus Pro2/10 924 UPW3 210 5 222, FL1.1 Unknown 2 + Filtration 0.6 µm Serial dilution K/10 924 UPW3 210 5 222, FL1.3 Prigmesiophyceae Phaeocysis 5 + Filtration 0.6 µm Serial dilution K/10 926 UPW3 210 5 224, FL2.3 Prymesiophyceae Phaeocysis 5 + Filtration 0.6 µm Serial dilution Wary small eukaryotes K/10 926 UPW3 210 30 206, FL1 Prasinophyceae Pycnococcus 1.7 Sorting Serial dilution <	910		STB21	194	5	190_FL2-4	Prasinophyceae	Prasinoderma ?	4			Sorting	Serial dilution		Green, yellow and red fluorescencing	K/10
1026 UPW1 198 5 194 Bacillariophyceae Chaetocorcs 15 Sorting Synechococcus Pro2/10 861 UPW1 198 5 194 Bacillariophyceae Phaeocystis 4 Sorting Synechococcus Pro2/10 861 UPW1 198 5 202 Prymnesiophyceae Phaeocystis 4 Sorting Sorting Very big eukaryotes K10 915 UPW3 210 5 222,FL2.3 Pelagophyceae Pelayopkyceae P	849		UPW1	198	5	193	Prymnesiophyceae	Phaeocystis	3	+		Sorting			Eukaryotes	K/10
1026 UPW1 198 5 199 Cyanophyceae Synechococcus 1 Sorting Synechococcus Pro210 924 UPW3 210 5 221, FL1 Urknown 2 + Filtration -0.6 µm Serial dilution Kr10 924 UPW3 210 5 222, FL1 Urknown 2 + Filtration -0.6 µm Serial dilution Kr10 925 UPW3 210 5 222, FL2 Prymesiophyceae Phaeocycits 5 + Filtration -0.6 µm Serial dilution More y small outaryotes Kr10 926 UPW3 210 5 226, FL2 Prymesiophyceae Phaeocycits 5 + Filtration -0.6 µm Serial dilution Very y small outaryotes Kr10 926 UPW3 210 30 206 Prymesiophyceae Pycnococcus 1.7 Sorting Serial dilution Very y small outaryotes Kr10 1059 UPW3 210 30 221 A 22	1025		UPW1	198	5	194	Bacillariophyceae	Chaetoceros	15			Sorting			Synechococcus	Pro2/10
b51 UPW1 198 5 202 Prymnesicphyceae Phacocysits 4 Sorting Very big eukaryotes K10 924 UPW3 210 5 222,FL2.3 Pelagophyceae Pelagopronas 4 Filtration <0.6 µm	1026		UPW1	198	5	199	Cyanophyceae	Synechococcus	1			Sorting			Synechococcus	Pro2/10
924 UPWs 210 5 221, FL1 Unknown 2 + Hittation 30 µ/m Serial allution K100 915 UPWs 210 5 223, FL2 Pelagophyceae Palagophyceae	851		UPW1	198	5	202	Prymnesiophyceae	Phaeocystis	4			Sorting			Very big eukaryotes	K/10
915 UPW3 210 5 222, FL2:3 Preside prime feat prim feat prim feat prime feat prim feat prime feat prim feat prime	924		UPW3	210	5	221_FL1-1	Unknown	Unknown	2	+		Filtration <0.6 µm	Serial dilution			K/100
Bach 006 UPW3 210 5 224,FL23 Priminisolynoleae Priminophyceae Priminisolynoleae Priminophyceae Priminisolynoleae Priminophyceae Priminisolynoleae Priminophyceae Priminisolynoleae Priminophyceae Priminisolynoleae Priminophyceae Priminisolynoleae Priminophyceae Priminisolynoleae Priminisolynoleae </td <td>915</td> <td></td> <td>UPW3</td> <td>210</td> <td>5</td> <td>223_FL2-3</td> <td>Pelagophyceae</td> <td>Pelagomonas</td> <td>4</td> <td></td> <td></td> <td>Filtration <0.6 µm</td> <td>Serial dilution</td> <td></td> <td></td> <td>Pro2/100</td>	915		UPW3	210	5	223_FL2-3	Pelagophyceae	Pelagomonas	4			Filtration <0.6 µm	Serial dilution			Pro2/100
byos Contrast Contrast <th< td=""><td>920</td><td></td><td>UPW3</td><td>210</td><td>5</td><td>224_FL2-3</td><td>Prymnesiophyceae</td><td>Phaeocysus</td><td>5</td><td></td><td></td><td>Filtration <0.6 µm</td><td>Serial dilution</td><td></td><td></td><td>Add Ec and D</td></th<>	920		UPW3	210	5	224_FL2-3	Prymnesiophyceae	Phaeocysus	5			Filtration <0.6 µm	Serial dilution			Add Ec and D
No. Unit No. Conc Fraining/Notes Fraining/Notes <td>1052</td> <td></td> <td></td> <td>210</td> <td>30</td> <td>220_FL2-3</td> <td>Presinonhyceae</td> <td>Puenococcuc</td> <td>25</td> <td>+</td> <td></td> <td>Sorting</td> <td>Senai dilution</td> <td></td> <td>Very small eukaryotes</td> <td>K/10</td>	1052			210	30	220_FL2-3	Presinonhyceae	Puenococcuc	25	+		Sorting	Senai dilution		Very small eukaryotes	K/10
Construction Construction<	931		LIPW3	210	30	206 El 1-1	Prasinophyceae	Pychococcus	2.5			Sorting	Serial dilution		Very small eukaryotes	K/10
Line Line Serial dilution Big black yetse Ki10 1059 UPWS 210 30 205 FL2.6 Pression/presse Pression/presse File Sorting Big black yetses Ki10 1059 UPWS 210 30 221 Company Sorting Dransophyses Ki10 1015 UPWS 210 30 211 Cyanophyses Sorting Big black yetses Ki10 1015 UPWS 210 30 212.FL2 Pressinophyses Sorting Sorting Big vanobacteria Ki10 930 UPWS 210 30 212.FL2 Pressinophyses Pressinoderma ? 2 Filtration <0.6 µm	882		LIPW3	210	30	208	Prymnesionhycese	Phaeocystis	5			Sorting	Contar diludi011		Rig eukaryotes	K/10
1059 UPW3 210 30 201 Prasinophyceae Prasinophyceae Sorting Omage Using Usin	1033		UPW3	210	30	208 El 2-6	Prymnesiophyceae	Phaeocystis	10			Sorting	Serial dilution		Big eukarvotes	K/10
1015 UPWS 210 30 211 Cyanophyceae Synechcoccous 1 Sorting Big cyanobacteria Pho210 932 UPWS 210 30 212.FL2 Prasimophyceae Prasimodymae Sorting Sorial Big cyanobacteria K100 930 UPWS 210 30 212.FL2 Prasimophyceae Prasimodymae Sorting Micropipette K100 936 UPWS 210 30 212.FLA Prasimophyceae Prasimodymae 2.5 Filtration <0.6 µm	1059		UPW3	210	30	209	Prasinophyceae	Pycnococcus	2			Sorting	- smar Gradion		Orange fluorescencing	K/10
332 UPW3 210 30 212 FL12 Prasimplyweae A + Filtration < 0.6 µm	1015		UPW3	210	30	211	Cvanophyceae	Synechococcus	1			Sorting			Big cyanobacteria	Pro2/10
330 UPW3 210 30 212.FLA Prasinophycese Prasinoderma ? 3 Filtration < 0.6 µm Micropipette K/100 936 UPW3 210 30 212.FLA Prasinophycese Prasinophyces	932		UPW3	210	30	212 EL 1-2	Prasinophyceae	Pycnococcus	4	+		Filtration < 0.6 //m	Serial dilution			K/100
936 UPW3 210 30 212 FLAS Prasinophyceae Prasinoderma 2 2.2 Filtration < 0.6 µm Micropipette K/100 934 UPW3 210 30 214 FLBS Prasinophyceae Prasinoderma 2 2.5 Filtration < 0.6 µm	930		UPW3	210	30	212_FLA2	Prasinophyceae	Prasinoderma ?	3			Filtration < 0.6 //m	Micropipette			K/100
934 UPW3 210 30 214-FLB3 Prasimophyceae Prasimoderma2 2.5 Filtration : 0.6 µm Micropipette Pro2/100 933 UPW3 210 30 214-FLB3 Prasimophyceae Prasimoderma2 2.5 Filtration : 0.6 µm Micropipette Pro2/100 1060 UPW3 210 30 216 Unknown 3.5 + Filtration : 0.6 µm Micropipette Pro2/100 929 UPW3 210 30 219,FL2:4 Prasimophyceae Prasimoderma2 2.5 Filtration : 0.6 µm Serial dilution Add Fe and 937 UPW3 210 30 219,FL2:4 Prasimophyceae Prasimoderma2 3 Filtration : 0.6 µm Serial dilution Add Fe and 947 UPX 213 0 235,FL1:4 Prasimophyceae Prasimoderma2 3 Filtration : 0.6 µm Serial dilution Add Fe and 946 UPX 213 0 235,FL1:4 Prasimoderma2 3 Filtration : 0.6 µm Se	936		UPW3	210	30	212_FLA5	Prasinophyceae	Prasinoderma ?	2.2			Filtration < 0.6 µm	Micropipette			K/100
933 UPW3 210 30 214 FLB6 Prasinophyceae	934		UPW3	210	30	214_FLB3	Prasinophyceae	Prasinoderma?	2.5			Filtration <0.6 µm	Micropipette			Pro2/100
1060 UPW3 210 30 216 Unknown 3.5 + Filtration < 0.6 µm Mode 929 UPW3 210 30 219,FL2.4 Prasinophyceae Prasinophyceae <td< td=""><td>933</td><td></td><td>UPW3</td><td>210</td><td>30</td><td>214_FLB6</td><td>Prasinophyceae</td><td>Prasinoderma?</td><td>2.5</td><td></td><td></td><td>Filtration <0.6 µm</td><td>Micropipette</td><td></td><td></td><td>Pro2/100</td></td<>	933		UPW3	210	30	214_FLB6	Prasinophyceae	Prasinoderma?	2.5			Filtration <0.6 µm	Micropipette			Pro2/100
929 UPW3 210 30 219,FL14 Prasinophyceae Pasinoderma? 2.5 Filtration < 0.6 µm Serial dilution Add Fe and 945 UPW3 210 30 219,FL23 Prymesicphyceae Phaeocystis 5 Filtration < 0.6 µm	1080		UPW3	210	30	216	Unknown	Unknown	3.5		+	Filtration <0.6 µm				Rice/100
935 UPW3 210 30 219,FL2:3 Prymnesic/phyceae Phaeocystis 5 Filtration < 0.6 µm Serial dilution Add Fe and 947 UPX 213 0 219,FL2:3 Unknown 4 Filtration < 0.6 µm	929		UPW3	210	30	219_FL1-4	Prasinophyceae	Prasinoderma?	2.5			Filtration < 0.6 μ m	Serial dilution			Add Fe and P
947 UPW3 210 30 219,FLC3 Unknown 4 + Filtration <0.6 μm Micropiette Add Fe and 946 UPX 213 0 235,FL1.4 Prasinophyceae Prasinohyceae Prasinophyceae <	935		UPW3	210	30	219_FL2-3	Prymnesiophyceae	Phaeocystis	5			Filtration <0.6 µm	Serial dilution			Add Fe and P
946 UPX 213 0 235,FL1-4 Prasinophyceae Prasinoderma? 3 Filtration <0.6 μm Serial dilution Add Fe and 926 UPX 213 0 235,FL2-3 Pelagorhyceae Pelagorhonas 2.5 Filtration <0.6 μm	947		UPW3	210	30	219_FLC3	Unknown	Unknown	4	+		Filtration <0.6 µm	Micropipette			Add Fe and P
926 UPX 213 0 235,FL2-3 Pelagophyceae Pelagomonas 2.5 Filtration <0.6 μm Serial dilution Add Fe and	946		UPX	213	0	235_FL1-4	Prasinophyceae	Prasinoderma?	3			Filtration <0.6 μ m	Serial dilution			Add Fe and P
	926		UPX	213	0	235_FL2-3	Pelagophyceae	Pelagomonas	2.5			Filtration <0.6 μ m	Serial dilution			Add Fe and P
950 UPX 213 0 237_DVA4 Bacillariophyceae Thalassiosira 13 Filtration <0.6 μm Serial dilution K/100	950		UPX	213	0	237_DVA4	Bacillariophyceae	Thalassiosira	13			Filtration <0.6 μ m	Serial dilution			K/100
943 UPX 213 0 237_DVB3 Pelagophyceae Pelagomonas 3 Filtration <0.6 μm Serial dilution K/100	943		UPX	213	0	237_DVB3	Pelagophyceae	Pelagomonas	3			Filtration <0.6 μ m	Serial dilution			K/100
945 UPX 213 0 237.DVB4 Trebouxiophyceae Picochlorum 2 Filtration <0.6 μm Serial dilution K/100	945		UPX	213	0	237_DVB4	Trebouxiophyceae	Picochlorum	2			Filtration < 0.6 μ m	Serial dilution			K/100
94 UPX 213 0 237_DVC4 Trebouxiophyceae Picochlorum 1.5 Filtration <0.6 μm Serial dilution K/100	944		UPX	213	0	237_DVC4	Trebouxiophyceae	Picochlorum	1.5			Filtration <0.6 μ m	Serial dilution			К/100

BGD

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean F. Le Gall et al.									
Title Page									
Abstract	Introduction								
Conclusions	References								
Tables	Figures								
[∢	۶I								
•	•								
Back	Close								
Full Scre	en / Esc								
Printer-frier	ndly Version								

BGD

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean

F. Le Gall et al.

Table 2. Continued.

RCC	Lost	Station	CTD	Depth	Preculture	Class	Genus	Size	Mixed	Hetereo- trophic	Step 1	Step 2	Step 3	Sorting target	Step 1 medium
1034		UPX	213	0	237_DVE6	Trebouxiophyceae	Picochlorum	1.5			Filtration <0.6 µm	Serial dilution			K/100
949		UPX	213	0	242_DVA9	Unknown	Unknown	2.5			Filtration <0.6 µm	Serial dilution			Add Fe and P
927		UPX	213	0	243_FL1-4	Prasinophyceae	Prasinoderma?	3			Filtration <0.6 µm	Serial dilution			Add Fe and P
942		UPX	213	40	231_FL1-2	Unknown	Unknown	4	+		Filtration <0.6 µm	Serial dilution			Pro2/100
1063		UPX	213	40	232	Bicosoecid	Unknown	3.5		+	Filtration <0.6 µm				Rice/100
1074		UPX	213	40	233	Unknown	Unknown	3		+	Filtration < 0.6 μ m				Rice/100
966		UPX	213	40	234_DVD10	Prasinophyceae	Micromonas	1.5	+		Filtration < 0.6 μ m	Serial dilution			Add Fe and P
913		UPX	213	40	234_DVD11	Prasinophyceae	Micromonas	2			Filtration <0.6 µm	Serial dilution			Add Fe and P
967		UPX	213	40	234_DVH12	Bacillariophyceae	Minutocellus	3	+		Filtration < 0.6 μ m	Serial dilution			Add Fe and P
1060		UPX	213	40	244	Prasinophyceae	Pycnococcus	2			Sorting			Big eukaryotes	K/10
1067		UPX	213	40	248	Unknown	Unknown	20		+	Sorting			Synechococcus	Pro2/10

Table 3. List of identified cultures ordered by phylogenetic group. The column rDNA cluster provides the RCC number of the reference culture for each cluster defined using Fast Group II (http://biome.sdsu.edu/fastgroup/fg_tools.htm) with the parameter sequence match set at 80%. For cultures for which no sequence was obtained this column remains empty.

Division	Class	Order	Genus	RCC	rRNA cluster	Preculture	Station	Depth	Size (µm)	Cell shape	Assemblage	Hetero- trophic	Lost
Cyanophyta	Cyanophyceae		Synechococcus	1031		48 B6Y	HLN3	30	1.0	cylindrical			
Cyanophyta	Cyanophyceae		Synechococcus	1030		48 A2Y	HLN3	30	1.0	cylindrical			
Cyanophyta	Cyanophyceae		Synechococcus	1027		48 B3Y	HLN3	30	1.0	cylindrical	chains		
Cyanophyta	Cyanophyceae		Synechococcus	1017		45 B5 463	HLN3	100	1.0	cylindrical	chains		
Cyanophyta	Cyanophyceae		Synechococcus	1018		45 B6 465	HLN3	100	1.0	cylindrical	chains		
Cyanophyta	Cyanophyceae		Synechococcus	1020		45 C4Y	HLN3	100	1.0	cylindrical	chains		
Cyanophyta	Cyanophyceae		Synechococcus	1016		45 B4 461	HLN3	100	1.0	elongated	chains		
Cyanophyta	Cyanophyceae		Synechococcus	1022		109 C2	STB14	150	1.0	cylindrical			
Cyanophyta	Cyanophyceae		Synechococcus	1023		112 B6	STB15	100	1.0	cylindrical			
Cyanophyta	Cyanophyceae		Synechococcus	1028		148 D3	EGY4	40	1.0	cylindrical			
Cyanophyta	Cyanophyceae		Synechococcus	1029		141 D	EGY4	40	1.0	coccoid			
Cyanophyta	Cyanophyceae		Synechococcus	1026		199	UPW1	5	1.0	cylindrical	chains		
Cyanophyta	Cyanophyceae		Synechococcus	1015		211	UPW3	30	1.0	cylindrical			
Chlorophyta	Prasinophyceae	Prasinococcales	Prasinoderma	907	916	271_FL1-4	MAR3	60	3.5	coccoid			
Chlorophyta	Prasinophyceae	Prasinococcales	Prasinoderma	916	916	34B2_FL2-5	MAR4	10	5.0	coccoid			
Chlorophyta	Prasinophyceae	Prasinococcales	Prasinoderma?	941	927	169_FL2-4	STB20	40	3.5	coccoid			
Chlorophyta	Prasinophyceae	Prasinococcales	Prasinoderma?	910	927	190_FL2-4	STB21	5	4.0	coccoid			
Chlorophyta	Prasinophyceae	Prasinococcales	Prasinoderma?	936	927	212_FLA5	UPW3	30	2.2	coccoid			
Chlorophyta	Prasinophyceae	Prasinococcales	Prasinoderma?	934	927	214_FLB3	UPW3	30	2.5	coccoid			
Chlorophyta	Prasinophyceae	Prasinococcales	Prasinoderma?	933	927	214_FLB6	UPW3	30	2.5	coccoid			
Chlorophyta	Prasinophyceae	Prasinococcales	Prasinoderma?	929	927	219_FL1-4	UPW3	30	2.5	oval			
Chlorophyta	Prasinophyceae	Prasinococcales	Prasinoderma ?	930	927	212_FLA2	UPW3	30	3.0	coccoid			
Chlorophyta	Prasinophyceae	Prasinococcales	Prasinoderma ?	946	927	235_FL1-4	UPX	0	3.0	flagellate			
Chlorophyta	Prasinophyceae	Prasinococcales	Prasinoderma ?	927	927	243_FL1-4	UPX	0	3.0	coccoid			
Chlorophyta	Prasinophyceae	Prasinococcales	Prasinococcus	859	859	74 A5	GYR2	180	4.0	coccoid			
										surrounded			
										by matrix			
Chlorophyta	Prasinophyceae	Pseudoscourfieldiales	Pycnococcus	931	932	206_FL1-1	UPW3	30	1.7	coccoid			
Chlorophyta	Prasinophyceae	Pseudoscourfieldiales	Pycnococcus	1059	932	209	UPW3	30	2.0	coccoid	clumps		
Chlorophyta	Prasinophyceae	Pseudoscourfieldiales	Pycnococcus	1058	932	206	UPW3	30	2.5	coccoid			
Chlorophyta	Prasinophyceae	Pseudoscourfieldiales	Pycnococcus	932	932	212.FL1-2	UPW3	30	4.0	coccoid	clumps		
Chlorophyta	Prasinophyceae	Pseudoscourfieldiales	Pycnococcus	1060	932	244	UPX	40	2.0	coccoid	clumps		
Chlorophyta	Prasinophyceae	clade VIIA	Unknown	857	917	40 A2	MAR4	10	2.5	coccoid			
Chlorophyta	Prasinophyceae	clade VIIA	Unknown	856	917	42 A2	MAR4	10	2.0	coccoid			
Chlorophyta	Prasinophyceae	clade VIIA	Unknown	996	917	46 B4S	HLN3	100	3.0	coccoid			
Chlorophyta	Prasinophyceae	clade VIIA	Unknown	997	997	46 B5S	HLN3	100	2.0	coccoid			
Chlorophyta	Prasinophyceae	clade VIIA	Unknown	1021	917	46 B6	HLN3	100	4.0	coccoid			
Chlorophyta	Prasinophyceae	clade VIIA	Unknown	1032	917	46 B7	HLN3	100	4.0	coccoid			
Chlorophyta	Prasinophyceae	clade VIIA	Unknown	998	998	46 C3S	HLN3	100	2.5	coccoid			
Chlorophyta	Prasinophyceae	clade VIIA	Unknown	917	917	182_FL1-3	STB20	5	1.5	coccoid			
Chlorophyta	Prasinophyceae	Mamiellales	Micromonas	966	913	234_DVD10	UPX	40	1.5	flagellate			
Chiorophyta	Prasinophyceae	Mamiellales	Micromonas	913	913	234_DVD11	UPX	40	2.0	flagellate			
Chlorophyta	Prasinophyceae?		Unknown	999	999	46 C4S 144	HLN3	100	2.5	coccoid			
Chlorophyta	Irebouxiophyceae		Picochiorum	944	945	237_DVC4	UPX	0	1.5	oval			
Chiorophyta	irebouxiophyceae		Picochiorum	1034	945	237_DVE6	UPX	U	1.5	eiongated			
Chlorophyta	Irebouxiophyceae		Picochiorum	945	945	237_DVB4	UPX	0	2.0	oval			
Haptophyta	Prymnesiophyceae		Phaeocystis	1000	940	30 A	MAH4	10	3.5	nagellate			
нарторпута	Prymnesiophyceae		Phaeocystis	1006	940	34 A	MAR4	10	3.5	riageilate			

BGD

4, 2699–2732, 2007

Picoplankton diversity in the South-East Pacific Ocean

Table 3. Continued.

Division	Class	Order	Genus	RCC	rRNA cluster	Preculture	Station	Depth	Size (µm)	Cell shape	Assemblage	Hetero- trophic	Lost
Haptophyta	Prymnesiophyceae		Phaeocystis	993	940	19 B	MAR4	60	3.0	flagellate			
Haptophyta	Prymnesiophyceae		Phaeocystis	992	940	18 B	MAR4	60	3.5	flagellate			
Haptophyta	Prymnesiophyceae		Phaeocystis	861	940	129 C1 552	EGY2	5	3.0	flagellate			
Haptophyta	Prymnesiophyceae		Phaeocystis	870	940	121 B	EGY2	5	5.0	coccoid	colonies		+
Haptophyta	Prymnesiophyceae		Phaeocystis	940	940	122 B	EGY2	5	5.0	coccoid			
Haptophyta	Prymnesiophyceae		Phaeocystis	849	849	193	UPW1	5	3.0	flagellate	colonies		
Haptophyta	Prymnesiophyceae		Phaeocystis	851	940	202	UPW1	5	4.0	coccoid	colonies		
Haptophyta	Prymnesiophyceae		Phaeocystis	882	940	208	UPW3	30	5.0	coccoid			
Haptophyta	Prymnesiophyceae		Phaeocystis	1033	940	208_FL2-6	UPW3	30	10.0	coccoid			
Haptophyta	Prymnesiophyceae		Phaeocystis?	1002		31 A	MAR4	10	4.7	flagellate			
Haptophyta	Prymnesiophyceae		Phaeocystis?	994		19 C	MAR4	60	5.0	flagellate+ coccoid			
Haptophyta	Prymnesiophyceae		Phaeocystis	908	940	226_FL2-3	UPW3	5	5.0	elongated			
Haptophyta	Prymnesiophyceae		Phaeocystis	925	940	224_FL2-3	UPW3	5	5.0	coccoid			
Haptophyta	Prymnesiophyceae		Phaeocystis	935	912	219_FL2-3	UPW3	30	5.0	flagellate			
Haptophyta	Prymnesiophyceae	Isochrysidales	Emiliania	914	912	34B_HO5	MAR4	10	3.0	coccoid			
Haptophyta	Prymnesiophyceae	Isochrysidales	Emiliania	921	912	32B_HO8	MAR4	10	3.0	coccoid			
Haptophyta	Prymnesiophyceae	Isochrysidales	Emiliania	962	912	32B_FL1-3	MAR4	10	3.5	round			
Haptophyta	Prymnesiophyceae	Isochrysidales	Emiliania	920	912	32B_HO3	MAR4	10	3.5	coccoid			
Haptophyta	Prymnesiophyceae	Isochrysidales	Emiliania	911	912	32B_FL1-2	MAR4	10	3.5	coccoid			
Haptophyta	Prymnesiophyceae	Isochrysidales	Emiliania	958	912	34B_HO6	MAR4	10	3.5	coccoid			
Haptophyta	Prymnesiophyceae	Isochrysidales	Emiliania	1001	912	30 B	MAR4	10	3.5	coccoid			
Haptophyta	Prymnesiophyceae	Isochrysidales	Emiliania	912	912	34B_HO17	MAR4	10	4.0	coccoid			
Haptophyta	Prymnesiophyceae	Isochrysidales	Emiliania	868	912	122 C	EGY2	5	4.0	coccoid			
Haptophyta	Prymnesiophyceae	Isochrysidales	Emiliania	867	912	130 A1	EGY2	5	5.0	coccoid			
Haptophyta	Prymnesiophyceae	Isochrysidales	Emiliania	951	912	140 B	EGY4	40	3.5	coccoid			
Haptophyta	Prymnesiophyceae	Isochrysidales	Emiliania	948	912	175_FL2-4	STB20	40	3.5	round			
Haptophyta	Prymnesiophyceae	Coccolithophorales	Unknown	1004		32 B	MAR4	10	5.0	round			
Haptophyta	Prymnesiophyceae	Coccolithophorales	Unknown	866		108 B1	STA14	5	4.0	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	953	926	44 A2	MAR4	10	3.0	elongated			
Stramenopile	Pelagophyceae		Pelagomonas	1010	926	43 PK	MAR4	10	3.0	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	855	926	40 B2	MAR4	10	3.5	elongated			
Stramenopile	Pelagophyceae		Pelagomonas	985	926	26 A2	MAR4	60	2.0	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	1013	926	48 C1S	HLN3	30	2.0	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	880	926	45 A2 475	HLN3	100	1.5	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	883	926	45 A5	HLN3	100	2.0	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	881	926	45 A3E	HLN3	100	2.0	bean-shaped			
Stramenopile	Pelagophyceae		Pelagomonas	1061	926	45 B4 462	HLN3	100	2.0	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	995	926	45 A2S	HLN3	100	2.5	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	1062	926	45 B5 464	HLN3	100	2.5	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	884	926	45 B6 466	HLN3	100	2.5	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	879	926	45 B2E	HLN3	100	2.5	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	969	926	93 B	STB13	160	2.0	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	988	926	98 A	STB13	160	2.5	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	968	926	92 B	STB13	160	2.5	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	972	926	109 B1	STB14	150	2.0	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	971	926	109 A1	STB14	150	2.0	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	974	926	109 B3	STB14	150	2.5	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	973	926	109 B2	STB14	150	2.5	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	975	926	110 A1	STB14	75	2.5	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	981	926	111 C1E	STB15	100	2.0	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	980	926	111 B2	STB15	100	2.0	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	978	978	111 D1E	STB15	100	2.0	flagellate			
· · · ·			-							-			

BGD

4, 2699–2732, 2007

Printer-friendly Version

Interactive Discussion

BGD

4, 2699–2732, 2007

Table 3. Continued.

Division	Class	Order	Genus	RCC	rRNA cluster	Preculture	Station	Depth	Size (µm)	Cell shape	Assemblage	Hetero- trophic	Lost
Stramenopile	Pelagophyceae		Pelagomonas	938	926	122 A	EGY2	5	2.0	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	860	926	129 B1	EGY2	5	2.0	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	869	926	121 A	EGY2	5	2.5	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	939	926	123 B	EGY2	5	3.0	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	875	926	130 A1E	EGY2	5	3.0	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	865	926	129 C2B	EGY2	5	3.0	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	979	926	131 A3	EGY3	80	2.0	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	976	926	131 A1	EGY3	80	2.5	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	977	926	131 B1	EGY3	80	2.5	flagellate			
Stramenopile	Pelagophyceae		Pelagomonas	871	926	140 C	EGY4	40	2.5	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	937	926	141 B	EGY4	40	3.0	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	915	926	223_FL2-3	UPW3	5	4.0	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	926	926	235_FL2-3	UPX	0	2.5	coccoid			
Stramenopile	Pelagophyceae		Pelagomonas	943	926	237_DVB3	UPX	0	3.0	coccoid			
Stramenopile	Pelagophyceae		Unknown	1024	926	25 B2	MAR4	60	4.0	round			
Stramenopile	Pelagophyceae		Unknown	986	926	27 A2	MAR4	60	2.5	coccoid			
Stramenopile	Bolidophyceae		Bolidomonas	852	852	47 C2	HLN3	30	2.0	flagellate			
Stramenopile	Dictyochophyceae		Florenciella	1007	1007	40 A	MAR4	10	3.5	flagellate			
Stramenopile	Dictyochophyceae		Florenciella	1008	1007	40 B	MAR4	10	4.0	flagellate			
Stramenopile	Unknown		Unknown	853	853	74 B1	GYR2	180	2.5	coccoid			
Stramenopile	Unknown		Unknown	862	853	90 A6	STB12	40	2.5	coccoid			
Stramenopile	Bacillariophyceae		Chaetoceros	1025		194	UPW1	5	15.0	rectangular	chains		
Stramenopile	Bacillariophyceae		Minutocellus	967	967	234_DVH12	UPX	40	3.0	rectangular			
Stramenopile	Bacillariophyceae		Thalassiosira	950	950	237_DVA4	UPX	0	13.0	elongated			
Alveolata	Dinophyceae		Prorocentrum	848	848	158	STB17	20	15.0	irregular			
Alveolata	Dinophyceae		Prorocentrum	922		182_FL1-1	STB20	5	14.0	flagellate			
Stramenopile	Bicosoecid		Caecitellus	1076	1072	37	MAR4	10	3.5	flagellate		+	
Stramenopile	Bicosoecid		Caecitellus	1072	1072	125	EGY2	5	3.5	flagellate		+	
Stramenopile	Bicosoecid		Caecitellus	1078	1072	126	EGY2	5	3.5	flagellate		+	
Stramenopile	Bicosoecid		Caecitellus	1064	1072	181	STB20	5	2.0	flagellate		+	
Stramenopile	Bicosoecid		Cafeteria	970	1077	111 B1	STB15	100	3.0	flagellate		+	
Stramenopile	Bicosoecid		Cafeteria	1071	1077	118	EGY2	80	3.0	flagellate		+	
Stramenopile	Bicosoecid		Cafeteria	1077	1077	97	STB13	160	3.0	flagellate		+	
Stramenopile	Bicosoecid		Unknown	1079	1079	83	STB11	200	3.0	flagellate		+	
Stramenopile	Bicosoecid		Unknown	1069	1069	145	EGY4	40	5.0	flagellate		+	
Stramenopile	Bicosoecid		Unknown	1063	1063	232	UPX	40	3.5	flagellate		+	
Kinetoplastida	Bodonid		Unknown	965	965	16B_FL2-1	MAR4	60	5.0	flagellate		+	
Kinetoplastida	Bodonid		Unknown	1065	1065	71	GYR2	300	4.0	flagellate		+	

Picoplankton diversity in the South-East Pacific Ocean

F. Le Gall et al.

Printer-friendly Version

Interactive Discussion

Table 4. Number of strains identified for the different phylogenetic groups.

anobacteria Cyanophyceae <i>Synechococcus</i> 13 13 lorophyta Prasinophyceae <i>Micromonas</i> 2 31 Prasinophyceae <i>Prasinococcus</i> 1
lorophyta Prasinophyceae <i>Micromonas</i> 2 31 Prasinophyceae <i>Prasinococcus</i> 1
Prasinophyceae Prasinococcus 1
Prasinophyceae Prasinoderma 2
Prasinophyceae Prasinoderma ? 9
Prasinophyceae Pycnococcus 5
Prasinophyceae Unknown 9
Trebouxiophyceae <i>Picochlorum</i> 3
amenopiles Bacillariophyceae Chaetoceros 1 58
Bacillariophyceae Minutocellus 1
Bacillariophyceae <i>Thalassiosira</i> 1
Bolidophyceae Bolidomonas 1
Dictyochophyceae Florenciella 2
Pelagophyceae Pelagomonas 38
Pelagophyceae Unknown 2
Unknown Unknown 2
Bicosoecid Caecitellus 4
Bicosoecid <i>Cafeteria</i> 3
Bicosoecid Unknown 3
ptophyta Prymnesiophyceae <i>Emiliania</i> 12 30
Prymnesiophyceae Phaeocystis 14
Prymnesiophyceae Phaeocystis? 2
Prymnesiophyceae Unknown 2
veolata Dinophyceae Prorocentrum 2 2
ietoplastida Bodonid Unknown 2

4, 2699-2732, 2007 **Picoplankton** diversity in the **South-East Pacific** Ocean F. Le Gall et al. Title Page Abstract Introduction Conclusions References Figures Tables 14 <

BGD

Interactive Discussion

Printer-friendly Version

Full Screen / Esc

Close

Back

Fig. 1. BIOSOPE cruise track displaying the location of stations sampled for cultures.

Fig. 2. Size histogram of all RCC cultures recovered from the BIOSOPE cruise.

Printer-friendly Version

Interactive Discussion

Fig. 3. Microscopy images of a selection of strains recovered during the BIOSOPE cruise. Scale bar is 5 μ m for all images except for the *Phaeocystis* colony (RCC 851). From top to bottom and from left to right. Cyanobacteria: RCC 1022 and 1027. Note the elongated shape and short chains made by RCC 1027. Prasinophyceae: *Prasinoderma* sp. (RCC 946), *Prasinococcus capsulatus* (RCC 859), *Pycnococcus provasoli* (RCC 931), undescribed species belonging to clade VII (RCC 857) and *Micromonas pusilla* (RCC 913). Trebouxiophyceae: *Picochlorum* sp. (RCC 945). Prymnesiophyceae: *Phaeocystis* sp. (RCC 851 and 908, note colonial form) and *Emiliana huxleyi* (RCC 867, calcifying, and RCC 951, not calcifying). Pelagophyceae: *Pelagomonas calceolata* (RCC 879, flagellated lugol fixed, and RCC 871, coccoid). Bolidophyceae: *Bolidomonas* sp. (RCC 852, lugol fixed). Heterokontophyta: unknown species (RCC 853). Diatom: *Chaetoceros* sp. (RCC 1025). Dinoflagellate: *Prorocentrum minimum* (RCC 922). 2731

BGD 4, 2699-2732, 2007 **Picoplankton** diversity in the South-East Pacific Ocean F. Le Gall et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Fig. 4. Phylogenetic analysis of selected strains recovered during the BIOSOPE cruise. One or two 18 S rRNA sequences from each taxonomic group was selected following clustering with Fast Group II (see Material and Methods). Neighbour-joining optimal tree with the sum of branch length=1.73998869 shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are displayed next to the branches. Only values larger than 60% are shown. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Kimura 2-parameter method and are in the units of the number of base substitutions per site. All positions containing gaps and missing data were eliminated from the dataset (Complete deletion option). There were a total of 394 positions in the final dataset. Phylogenetic analyses were conducted with MEGA4 (http://www.megasoftware.net/mega4/).

BGD 4, 2699-2732, 2007 Picoplankton diversity in the South-East Pacific Ocean F. Le Gall et al. **Title Page** Abstract Introduction Conclusions References Tables **Figures** 14 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion